» Articles » PMID: 39502778

Adding Highly Variable Genes to Spatially Variable Genes Can Improve Cell Type Clustering Performance in Spatial Transcriptomics Data

Overview
Journal Res Sq
Date 2024 Nov 6
PMID 39502778
Authors
Affiliations
Soon will be listed here.
Abstract

Spatial transcriptomics has allowed researchers to analyze transcriptome data in its tissue sample's spatial context. Various methods have been developed for detecting spatially variable genes (SV genes), whose gene expression over the tissue space shows strong spatial autocorrelation. Such genes are often used to define clusters in cells or spots downstream. However, highly variable (HV) genes, whose quantitative gene expressions show significant variation from cell to cell, are conventionally used in clustering analyses. In this report, we investigate whether adding highly variable genes to spatially variable genes can improve the cell type clustering performance in spatial transcriptomics data. We tested the clustering performance of HV genes, SV genes, and the union of both gene sets (concatenation) on over 50 real spatial transcriptomics datasets across multiple platforms, using a variety of spatial and non-spatial metrics. Our results show that combining HV genes and SV genes can improve overall cell-type clustering performance.

References
1.
Ravasio A, Myaing M, Chia S, Arora A, Sathe A, Cao E . Single-cell analysis of EphA clustering phenotypes to probe cancer cell heterogeneity. Commun Biol. 2020; 3(1):429. PMC: 7411022. DOI: 10.1038/s42003-020-01136-4. View

2.
Lause J, Berens P, Kobak D . Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data. Genome Biol. 2021; 22(1):258. PMC: 8419999. DOI: 10.1186/s13059-021-02451-7. View

3.
Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni J . MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020; 21(1):111. PMC: 7212577. DOI: 10.1186/s13059-020-02015-1. View

4.
Sankowski R, Suss P, Benkendorff A, Bottcher C, Fernandez-Zapata C, Chhatbar C . Multiomic spatial landscape of innate immune cells at human central nervous system borders. Nat Med. 2023; 30(1):186-198. PMC: 10803260. DOI: 10.1038/s41591-023-02673-1. View

5.
Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J . Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma. Cancer Res. 2018; 78(20):5970-5979. DOI: 10.1158/0008-5472.CAN-18-0747. View