6.
Hughes T, Miller G, Swamidass S
. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network. ACS Cent Sci. 2016; 1(4):168-80.
PMC: 4827534.
DOI: 10.1021/acscentsci.5b00131.
View
7.
Rashidi M, Soltani S
. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov. 2017; 12(3):305-316.
DOI: 10.1080/17460441.2017.1284198.
View
8.
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S
. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet. 2015; 30(1):52-63.
DOI: 10.1016/j.dmpk.2014.10.009.
View
9.
Pryde D, Dalvie D, Hu Q, Jones P, Obach R, Tran T
. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem. 2010; 53(24):8441-60.
DOI: 10.1021/jm100888d.
View
10.
Dobo K, Kenyon M, Dirat O, Engel M, Fleetwood A, Martin M
. Practical and Science-Based Strategy for Establishing Acceptable Intakes for Drug Product -Nitrosamine Impurities. Chem Res Toxicol. 2022; 35(3):475-489.
PMC: 8941624.
DOI: 10.1021/acs.chemrestox.1c00369.
View
11.
Kuhnke L, Ter Laak A, Goller A
. Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines. J Chem Inf Model. 2019; 59(2):668-672.
DOI: 10.1021/acs.jcim.8b00758.
View
12.
Carracedo-Reboredo P, Linares-Blanco J, Rodriguez-Fernandez N, Cedron F, Novoa F, Carballal A
. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J. 2021; 19:4538-4558.
PMC: 8387781.
DOI: 10.1016/j.csbj.2021.08.011.
View
13.
Varnek A, Baskin I
. Machine learning methods for property prediction in chemoinformatics: Quo Vadis?. J Chem Inf Model. 2012; 52(6):1413-37.
DOI: 10.1021/ci200409x.
View
14.
Amoroso N, Gambacorta N, Mastrolorito F, Togo M, Trisciuzzi D, Monaco A
. Making sense of chemical space network shows signs of criticality. Sci Rep. 2023; 13(1):21335.
PMC: 10696027.
DOI: 10.1038/s41598-023-48107-3.
View
15.
Gambacorta N, Ciriaco F, Amoroso N, Altomare C, Bajorath J, Nicolotti O
. CIRCE: Web-Based Platform for the Prediction of Cannabinoid Receptor Ligands Using Explainable Machine Learning. J Chem Inf Model. 2023; 63(18):5916-5926.
DOI: 10.1021/acs.jcim.3c00914.
View
16.
Togo M, Mastrolorito F, Ciriaco F, Trisciuzzi D, Tondo A, Gambacorta N
. TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity. J Chem Inf Model. 2022; 63(1):56-66.
DOI: 10.1021/acs.jcim.2c01126.
View
17.
Ciriaco F, Gambacorta N, Trisciuzzi D, Nicolotti O
. PLATO: A Predictive Drug Discovery Web Platform for Efficient Target Fishing and Bioactivity Profiling of Small Molecules. Int J Mol Sci. 2022; 23(9).
PMC: 9103655.
DOI: 10.3390/ijms23095245.
View
18.
Ciriaco F, Gambacorta N, Alberga D, Nicolotti O
. Quantitative Polypharmacology Profiling Based on a Multifingerprint Similarity Predictive Approach. J Chem Inf Model. 2021; 61(10):4868-4876.
DOI: 10.1021/acs.jcim.1c00498.
View
19.
Yan X, Zhang S, He C
. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods. Comput Biol Chem. 2018; 78:460-467.
DOI: 10.1016/j.compbiolchem.2018.11.028.
View
20.
Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T
. The rise of deep learning in drug discovery. Drug Discov Today. 2018; 23(6):1241-1250.
DOI: 10.1016/j.drudis.2018.01.039.
View