Statistical Machine Learning Techniques Applied to NIR Spectral Data for Rapid Detection of Sudan Dye-I in Turmeric Powders with Optimized Pre-processing and Wavelength Selection
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05971-9.
References
1.
Yeow S, Shahar A, Abdul Aziz N, Anuar M, Yusof Y, Taip F
. The influence of operational parameters and feed preparation in a convective batch ribbon powder mixer. Drug Des Devel Ther. 2011; 5:465-9.
PMC: 3232173.
DOI: 10.2147/DDDT.S25047.
View
2.
Konc J
. Identification of neurological disease targets of natural products by computational screening. Neural Regen Res. 2019; 14(12):2075-2076.
PMC: 6788253.
DOI: 10.4103/1673-5374.262576.
View
3.
Kuttan R, Bhanumathy P, Nirmala K, George M
. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985; 29(2):197-202.
DOI: 10.1016/0304-3835(85)90159-4.
View
4.
Ferreira G, Garcia H, Couri M, Dos Santos H, De Oliveira L
. On the azo/hydrazo equilibrium in Sudan I azo dye derivatives. J Phys Chem A. 2013; 117(3):642-9.
DOI: 10.1021/jp310229h.
View
5.
Rajasekaran S
. Therapeutic potential of curcumin in gastrointestinal diseases. World J Gastrointest Pathophysiol. 2011; 2(1):1-14.
PMC: 3097964.
DOI: 10.4291/wjgp.v2.i1.1.
View