6.
Gandhi L, Camidge D, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D
. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol. 2011; 29(7):909-16.
PMC: 4668282.
DOI: 10.1200/JCO.2010.31.6208.
View
7.
Du Y, Klimstra D, Varmus H
. Activation of PyMT in beta cells induces irreversible hyperplasia, but oncogene-dependent acinar cell carcinomas when activated in pancreatic progenitors. PLoS One. 2009; 4(9):e6932.
PMC: 2758666.
DOI: 10.1371/journal.pone.0006932.
View
8.
Chawla A, Cororaton A, Idowu M, Damle P, Szomju B, Ellis K
. An intestinal stem cell niche in mutated neoplasia targetable by CtBP inhibition. Oncotarget. 2018; 9(65):32408-32418.
PMC: 6126694.
DOI: 10.18632/oncotarget.25784.
View
9.
Hafezi S, Rahmani M
. Targeting BCL-2 in Cancer: Advances, Challenges, and Perspectives. Cancers (Basel). 2021; 13(6).
PMC: 8001391.
DOI: 10.3390/cancers13061292.
View
10.
Zhang J, Zhu J, Yang L, Guan C, Ni R, Wang Y
. Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression. Tumour Biol. 2015; 36(9):6701-14.
DOI: 10.1007/s13277-015-3354-x.
View
11.
. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004; 306(5696):636-40.
DOI: 10.1126/science.1105136.
View
12.
Zheng X, Song T, Dou C, Jia Y, Liu Q
. CtBP2 is an independent prognostic marker that promotes GLI1 induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget. 2015; 6(6):3752-69.
PMC: 4414151.
DOI: 10.18632/oncotarget.2915.
View
13.
Paliwal S, Ho N, Parker D, Grossman S
. CtBP2 Promotes Human Cancer Cell Migration by Transcriptional Activation of Tiam1. Genes Cancer. 2012; 3(7-8):481-90.
PMC: 3527986.
DOI: 10.1177/1947601912463695.
View
14.
Chinnadurai G
. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res. 2009; 69(3):731-4.
PMC: 4367538.
DOI: 10.1158/0008-5472.CAN-08-3349.
View
15.
Skene P, Henikoff J, Henikoff S
. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018; 13(5):1006-1019.
DOI: 10.1038/nprot.2018.015.
View
16.
Zhu Q, Liu N, Orkin S, Yuan G
. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. Genome Biol. 2019; 20(1):192.
PMC: 6734249.
DOI: 10.1186/s13059-019-1802-4.
View
17.
Machanick P, Bailey T
. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27(12):1696-7.
PMC: 3106185.
DOI: 10.1093/bioinformatics/btr189.
View
18.
Skene P, Henikoff S
. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife. 2017; 6.
PMC: 5310842.
DOI: 10.7554/eLife.21856.
View
19.
Xu J, Li L, Xiong J, DenDekker A, Ye A, Karatas H
. MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program. Cell Discov. 2016; 2:16008.
PMC: 4869169.
DOI: 10.1038/celldisc.2016.8.
View
20.
Boise L, Gonzalez-Garcia M, Postema C, Ding L, LINDSTEN T, Turka L
. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993; 74(4):597-608.
DOI: 10.1016/0092-8674(93)90508-n.
View