» Articles » PMID: 39170265

Harnessing Transcriptomic Signals for Amyotrophic Lateral Sclerosis to Identify Novel Drugs and Enhance Risk Prediction

Overview
Journal Heliyon
Specialty Social Sciences
Date 2024 Aug 22
PMID 39170265
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. This study integrates common genetic association results from the latest ALS genome-wide association study (GWAS) summary statistics with functional genomic annotations with the aim of providing mechanistic insights into ALS risk loci, inferring drug repurposing opportunities, and enhancing prediction of ALS risk and clinical characteristics.

Methods: Genes associated with ALS were identified using GWAS summary statistic methodology including SuSiE SNP-based fine-mapping, and transcriptome- and proteome-wide association study (TWAS/PWAS) analyses. Using several approaches, gene associations were integrated with the DrugTargetor drug-gene interaction database to identify drugs that could be repurposed for the treatment of ALS. Furthermore, ALS gene associations from TWAS were combined with observed blood expression in two external ALS case-control datasets to calculate polytranscriptomic scores and evaluate their utility for prediction of ALS risk and clinical characteristics, including site of onset, age at onset, and survival.

Results: SNP-based fine-mapping, TWAS and PWAS identified 118 genes associated with ALS, with TWAS and PWAS providing novel mechanistic insights. Drug repurposing analyses identified six drugs significantly enriched for interactions with ALS associated genes, though directionality could not be determined. Additionally, drug class enrichment analysis showed gene signatures linked to calcium channel blockers may reduce ALS risk, whereas antiepileptic drugs may increase ALS risk. Across the two observed expression target samples, ALS polytranscriptomic scores significantly predicted ALS risk (  = 5.1 %; -value = 3.2 × 10) and clinical characteristics.

Conclusions: Functionally-informed analyses of ALS GWAS summary statistics identified novel mechanistic insights into ALS aetiology, highlighted several therapeutic research avenues, and enabled statistically significant prediction of ALS risk.

Citing Articles

Statistical examination of shared loci in neuropsychiatric diseases using genome-wide association study summary statistics.

Spargo T, Gilchrist L, Hunt G, Dobson R, Proitsi P, Al-Chalabi A Elife. 2024; 12.

PMID: 39688956 PMC: 11651651. DOI: 10.7554/eLife.88768.


Transcriptomic risk scores for attention deficit/hyperactivity disorder.

Cabana-Dominguez J, Llonga N, Arribas L, Alemany S, Vilar-Ribo L, Demontis D Mol Psychiatry. 2023; 28(8):3493-3502.

PMID: 37537283 PMC: 10618083. DOI: 10.1038/s41380-023-02200-1.

References
1.
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson M, Powell J . Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016; 48(5):481-7. DOI: 10.1038/ng.3538. View

2.
Brown R, Al-Chalabi A . Amyotrophic Lateral Sclerosis. N Engl J Med. 2017; 377(2):162-172. DOI: 10.1056/NEJMra1603471. View

3.
McLaughlin R, Vajda A, Hardiman O . Heritability of Amyotrophic Lateral Sclerosis: Insights From Disparate Numbers. JAMA Neurol. 2015; 72(8):857-8. DOI: 10.1001/jamaneurol.2014.4049. View

4.
Guise A, Misal S, Carson R, Chu J, Boekweg H, Van Der Watt D . TDP-43-stratified single-cell proteomics of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. Cell Rep. 2024; 43(1):113636. PMC: 10926001. DOI: 10.1016/j.celrep.2023.113636. View

5.
Auton A, Brooks L, Durbin R, Garrison E, Kang H, Korbel J . A global reference for human genetic variation. Nature. 2015; 526(7571):68-74. PMC: 4750478. DOI: 10.1038/nature15393. View