4.
Buttermore E, Thaxton C, Bhat M
. Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res. 2013; 91(5):603-22.
PMC: 4049519.
DOI: 10.1002/jnr.23197.
View
5.
Einheber S, Zanazzi G, Ching W, Scherer S, Milner T, Peles E
. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. J Cell Biol. 1998; 139(6):1495-506.
PMC: 2132621.
DOI: 10.1083/jcb.139.6.1495.
View
5.
Bonetto G, Belin D, Karadottir R
. Myelin: A gatekeeper of activity-dependent circuit plasticity?. Science. 2021; 374(6569):eaba6905.
DOI: 10.1126/science.aba6905.
View
6.
Lesmana H, Vawter Lee M, Hosseini S, Burrow T, Hallinan B, Bove K
. CNTNAP1-Related Congenital Hypomyelinating Neuropathy. Pediatr Neurol. 2019; 93:43-49.
DOI: 10.1016/j.pediatrneurol.2018.12.014.
View
7.
Nizon M, Cogne B, Vallat J, Joubert M, Liet J, Simon L
. Two novel variants in CNTNAP1 in two siblings presenting with congenital hypotonia and hypomyelinating neuropathy. Eur J Hum Genet. 2016; 25(1):150-152.
PMC: 5159775.
DOI: 10.1038/ejhg.2016.142.
View
8.
Chang C, Sell L, Shi Q, Bhat M
. Mouse models of human CNTNAP1-associated congenital hypomyelinating neuropathy and genetic restoration of murine neurological deficits. Cell Rep. 2023; 42(10):113274.
PMC: 10873044.
DOI: 10.1016/j.celrep.2023.113274.
View
9.
Sun X, Takagishi Y, Okabe E, Chishima Y, Kanou Y, Murase S
. A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves. J Neuropathol Exp Neurol. 2009; 68(11):1207-18.
DOI: 10.1097/NEN.0b013e3181be2e96.
View
9.
Coman I, Aigrot M, Seilhean D, Reynolds R, Girault J, Zalc B
. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain. 2006; 129(Pt 12):3186-95.
DOI: 10.1093/brain/awl144.
View
10.
Shen D, Zhang L, Wei E, Yang Y
. Autophagy in synaptic development, function, and pathology. Neurosci Bull. 2015; 31(4):416-26.
PMC: 5563709.
DOI: 10.1007/s12264-015-1536-6.
View
11.
Huang H, Chen L, Zhang H, Li S, Liu P, Zhao T
. Autophagy Promotes Peripheral Nerve Regeneration and Motor Recovery Following Sciatic Nerve Crush Injury in Rats. J Mol Neurosci. 2016; 58(4):416-23.
PMC: 4829621.
DOI: 10.1007/s12031-015-0672-9.
View
12.
Bankston A, Forston M, Howard R, Andres K, Smith A, Saraswat Ohri S
. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia. 2019; 67(9):1745-1759.
DOI: 10.1002/glia.23646.
View
12.
Lee S, Sato Y, Nixon R
. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J Neurosci. 2011; 31(21):7817-30.
PMC: 3351137.
DOI: 10.1523/JNEUROSCI.6412-10.2011.
View
13.
Komatsu M, Wang Q, Holstein G, Friedrich Jr V, Iwata J, Kominami E
. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007; 104(36):14489-94.
PMC: 1964831.
DOI: 10.1073/pnas.0701311104.
View
14.
Yamaguchi J, Suzuki C, Nanao T, Kakuta S, Ozawa K, Tanida I
. Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy. 2017; 14(5):764-777.
PMC: 6070006.
DOI: 10.1080/15548627.2017.1314897.
View
15.
Clark S, Graybeal L, Bhattacharjee S, Thomas C, Bhattacharya S, Cox D
. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons. PLoS One. 2018; 13(11):e0206743.
PMC: 6218061.
DOI: 10.1371/journal.pone.0206743.
View