» Articles » PMID: 26139541

Autophagy in Synaptic Development, Function, and Pathology

Overview
Journal Neurosci Bull
Specialty Neurology
Date 2015 Jul 4
PMID 26139541
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

In the nervous system, neurons contact each other to form neuronal circuits and drive behavior, relying heavily on synaptic connections. The proper development and growth of synapses allows functional transmission of electrical information between neurons or between neurons and muscle fibers. Defects in synapse-formation or development lead to many diseases. Autophagy, a major determinant of protein turnover, is an essential process that takes place in developing synapses. During the induction of autophagy, proteins and cytoplasmic components are encapsulated in autophagosomes, which fuse with lysosomes to form autolysosomes. The cargoes are subsequently degraded and recycled. However, aberrant autophagic activity may lead to synaptic dysfunction, which is a common pathological characteristic in several disorders. Here, we review the current understanding of autophagy in regulating synaptic development and function. In addition, autophagy-related synaptic dysfunction in human diseases is also summarized.

Citing Articles

A narrative review of autophagy in migraine.

Huang Y, Li H, Yu Q, Pan Y Front Neurosci. 2025; 19:1500189.

PMID: 40027467 PMC: 11868061. DOI: 10.3389/fnins.2025.1500189.


Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport.

Haynes J, Joshi A, Larue R, Eisenmann E, Govindarajan R Pharmaceutics. 2025; 16(12.

PMID: 39771570 PMC: 11677988. DOI: 10.3390/pharmaceutics16121592.


Contactin -Associated protein1 Regulates Autophagy by Modulating the PI3K/AKT/mTOR Signaling Pathway and ATG4B Levels in Vitro and in Vivo.

Zou Y, Zhang X, Chen X, Ma X, Feng X, Sun Y Mol Neurobiol. 2024; 62(3):2764-2780.

PMID: 39164481 PMC: 11790771. DOI: 10.1007/s12035-024-04425-9.


AGAP1-associated endolysosomal trafficking abnormalities link gene-environment interactions in neurodevelopmental disorders.

Lewis S, Bakhtiari S, Forstrom J, Bayat A, Bilan F, Guyader G Dis Model Mech. 2023; 16(9).

PMID: 37470098 PMC: 10548112. DOI: 10.1242/dmm.049838.


The human acetylcholinesterase C-terminal T30 peptide activates neuronal growth through alpha 7 nicotinic acetylcholine receptors and the mTOR pathway.

Graur A, Sinclair P, Schneeweis A, Pak D, Kabbani N Sci Rep. 2023; 13(1):11434.

PMID: 37454238 PMC: 10349870. DOI: 10.1038/s41598-023-38637-1.


References
1.
Tang G, Gudsnuk K, Kuo S, Cotrina M, Rosoklija G, Sosunov A . Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014; 83(5):1131-43. PMC: 4159743. DOI: 10.1016/j.neuron.2014.07.040. View

2.
Maday S, Wallace K, Holzbaur E . Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol. 2012; 196(4):407-17. PMC: 3283992. DOI: 10.1083/jcb.201106120. View

3.
McCabe B, Hom S, Aberle H, Fetter R, Marques G, Haerry T . Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron. 2004; 41(6):891-905. DOI: 10.1016/s0896-6273(04)00073-x. View

4.
Zhu J, Vereshchagina N, Sreekumar V, Burbulla L, Costa A, Daub K . Knockdown of Hsc70-5/mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson's disease model. PLoS One. 2014; 8(12):e83714. PMC: 3875477. DOI: 10.1371/journal.pone.0083714. View

5.
Hernandez D, Torres C, Setlik W, Cebrian C, Mosharov E, Tang G . Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012; 74(2):277-84. PMC: 3578406. DOI: 10.1016/j.neuron.2012.02.020. View