6.
Archer H, Evans J, Leonard H, Colvin L, Ravine D, Christodoulou J
. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J Med Genet. 2006; 44(2):148-52.
PMC: 2598067.
DOI: 10.1136/jmg.2006.045260.
View
7.
Ebert D, Gabel H, Robinson N, Kastan N, Hu L, Cohen S
. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013; 499(7458):341-5.
PMC: 3922283.
DOI: 10.1038/nature12348.
View
8.
Graff J, Rei D, Guan J, Wang W, Seo J, Hennig K
. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012; 483(7388):222-6.
PMC: 3498952.
DOI: 10.1038/nature10849.
View
9.
Nan X, Hou J, Maclean A, Nasir J, Lafuente M, Shu X
. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Natl Acad Sci U S A. 2007; 104(8):2709-14.
PMC: 1796997.
DOI: 10.1073/pnas.0608056104.
View
10.
Ip J, Mellios N, Sur M
. Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat Rev Neurosci. 2018; 19(6):368-382.
PMC: 6402579.
DOI: 10.1038/s41583-018-0006-3.
View
11.
Latora V, Marchiori M
. Efficient behavior of small-world networks. Phys Rev Lett. 2001; 87(19):198701.
DOI: 10.1103/PhysRevLett.87.198701.
View
12.
Trujillo C, Gao R, Negraes P, Gu J, Buchanan J, Preissl S
. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell. 2019; 25(4):558-569.e7.
PMC: 6778040.
DOI: 10.1016/j.stem.2019.08.002.
View
13.
Ananiev G, Williams E, Li H, Chang Q
. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011; 6(9):e25255.
PMC: 3180386.
DOI: 10.1371/journal.pone.0025255.
View
14.
Muldoon S, Bridgeford E, Bassett D
. Small-World Propensity and Weighted Brain Networks. Sci Rep. 2016; 6:22057.
PMC: 4766852.
DOI: 10.1038/srep22057.
View
15.
Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez S, Mufson E
. HDAC2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathol Appl Neurobiol. 2018; 45(4):380-397.
PMC: 6433556.
DOI: 10.1111/nan.12518.
View
16.
Lamonica J, Kwon D, Goffin D, Fenik P, Johnson B, Cui Y
. Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome-like phenotypes. J Clin Invest. 2017; 127(5):1889-1904.
PMC: 5409785.
DOI: 10.1172/JCI90967.
View
17.
Jin X, Chen X, Xiao L
. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci. 2017; 10:316.
PMC: 5632713.
DOI: 10.3389/fnmol.2017.00316.
View
18.
Nan X, Ng H, Johnson C, Laherty C, Turner B, Eisenman R
. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998; 393(6683):386-9.
DOI: 10.1038/30764.
View
19.
Levin A, Leal A, Gabard-Durnam L, OLeary H
. BEAPP: The Batch Electroencephalography Automated Processing Platform. Front Neurosci. 2018; 12:513.
PMC: 6090769.
DOI: 10.3389/fnins.2018.00513.
View
20.
Anderson C, Swanson R
. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000; 32(1):1-14.
View