» Articles » PMID: 30131667

BEAPP: The Batch Electroencephalography Automated Processing Platform

Overview
Journal Front Neurosci
Date 2018 Aug 23
PMID 30131667
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Electroencephalography (EEG) offers information about brain function relevant to a variety of neurologic and neuropsychiatric disorders. EEG contains complex, high-temporal-resolution information, and computational assessment maximizes our potential to glean insight from this information. Here we present the Batch EEG Automated Processing Platform (BEAPP), an automated, flexible EEG processing platform incorporating freely available software tools for batch processing of multiple EEG files across multiple processing steps. BEAPP does not prescribe a specified EEG processing pipeline; instead, it allows users to choose from a menu of options for EEG processing, including steps to manage EEG files collected across multiple acquisition setups (e.g., for multisite studies), minimize artifact, segment continuous and/or event-related EEG, and perform basic analyses. Overall, BEAPP aims to streamline batch EEG processing, improve accessibility to computational EEG assessment, and increase reproducibility of results.

Citing Articles

Resting state EEG in young children with Tuberous Sclerosis Complex: associations with medications and seizures.

Clements C, Engelstad A, Wilkinson C, Hyde C, Hartney M, Simmons A J Neurodev Disord. 2025; 17(1):2.

PMID: 39827117 PMC: 11742757. DOI: 10.1186/s11689-025-09590-z.


Interconnected pathways link faecal microbiota plasma lipids and brain activity to childhood malnutrition related cognition.

Portlock T, Shama T, Kakon S, Hartjen B, Pook C, Wilson B Nat Commun. 2025; 16(1):473.

PMID: 39773949 PMC: 11707170. DOI: 10.1038/s41467-024-55798-3.


Change in aperiodic activity over first year of life is associated with later autism diagnosis and 18-month language development in infants with family history of autism.

Wilkinson C, Chung H, Dave A, Tager-Flusberg H, Nelson C medRxiv. 2025; .

PMID: 39763568 PMC: 11702732. DOI: 10.1101/2024.12.15.24319061.


Associations Among EEG Aperiodic Slope, Infant Temperament, and Maternal Anxiety/Depression Symptoms in Infancy.

Sacks D, Levin A, Nelson C, Bosquet Enlow M Psychophysiology. 2025; 62(1):e14757.

PMID: 39760248 PMC: 11789922. DOI: 10.1111/psyp.14757.


EEG-based brain age prediction in infants-toddlers: Implications for early detection of neurodevelopmental disorders.

An W, Bhowmik A, Nelson C, Wilkinson C Dev Cogn Neurosci. 2024; 71():101493.

PMID: 39721149 PMC: 11732522. DOI: 10.1016/j.dcn.2024.101493.


References
1.
Chella F, DAndrea A, Basti A, Pizzella V, Marzetti L . Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice. Front Neurosci. 2017; 11:262. PMC: 5432555. DOI: 10.3389/fnins.2017.00262. View

2.
Dong L, Li F, Liu Q, Wen X, Lai Y, Xu P . MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG. Front Neurosci. 2017; 11:601. PMC: 5670162. DOI: 10.3389/fnins.2017.00601. View

3.
Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C . MNE software for processing MEG and EEG data. Neuroimage. 2013; 86:446-60. PMC: 3930851. DOI: 10.1016/j.neuroimage.2013.10.027. View

4.
Kayser J, Tenke C . Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clin Neurophysiol. 2005; 117(2):348-68. DOI: 10.1016/j.clinph.2005.08.034. View

5.
Kayser J, Tenke C . Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. Int J Psychophysiol. 2015; 97(3):189-209. PMC: 4537804. DOI: 10.1016/j.ijpsycho.2015.04.012. View