» Articles » PMID: 39137218

Impact of Oxygen and Glucose Availability on the Viability and Connectivity of Islet Cells: A Computational Study of Reconstructed Avascular Human Islets

Overview
Specialty Biology
Date 2024 Aug 13
PMID 39137218
Authors
Affiliations
Soon will be listed here.
Abstract

The experimental study and transplantation of pancreatic islets requires their isolation from the surrounding tissue, and therefore, from the vasculature. Under these conditions, avascular islets rely on the diffusion of peripheral oxygen and nutrients to comply with the requirements of islet cells while responding to changes in body glucose. As a complement to the experimental work, computational models have been widely used to estimate how avascular islets would be affected by the hypoxic conditions found both in culture and transplant sites. However, previous models have been based on simplified representations of pancreatic islets which has limited the reach of the simulations performed. Aiming to contribute with a more realistic model of avascular human islets, in this work we used architectures of human islets reconstructed from experimental data to simulate the availability of oxygen for α, β and δ-cells, emulating culture and transplant conditions at different glucose concentrations. The modeling approach proposed allowed us to quantitatively estimate how the loss of cells due to severe hypoxia would impact interactions between islet cells, ultimately segregating the islet into disconnected subnetworks. According to the simulations performed, islet encapsulation, by reducing the oxygen available within the islets, could severely compromise cell viability. Moreover, our model suggests that even without encapsulation, only microislets composed of less than 100 cells would remain viable in oxygenation conditions found in transplant sites. Overall, in this article we delineate a novel modeling methodology to simulate detailed avascular islets in experimental and transplant conditions with potential applications in the field of islet encapsulation.

Citing Articles

Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization.

Moeun B, Lemaire F, Smink A, Ebrahimi Orimi H, Leask R, de Vos P J Tissue Eng. 2025; 16:20417314241284826.

PMID: 39866963 PMC: 11758540. DOI: 10.1177/20417314241284826.

References
1.
Komatsu H, Kang D, Medrano L, Barriga A, Mendez D, Rawson J . Isolated human islets require hyperoxia to maintain islet mass, metabolism, and function. Biochem Biophys Res Commun. 2016; 470(3):534-538. DOI: 10.1016/j.bbrc.2016.01.110. View

2.
Hellman B, Salehi A, Gylfe E, Dansk H, Grapengiesser E . Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets. Endocrinology. 2009; 150(12):5334-40. DOI: 10.1210/en.2009-0600. View

3.
Kakabadze Z, Gupta S, Brandhorst D, Korsgren O, Berishvili E . Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transpl Int. 2010; 24(2):175-83. PMC: 3017220. DOI: 10.1111/j.1432-2277.2010.01160.x. View

4.
OSullivan E, Vegas A, Anderson D, Weir G . Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev. 2011; 32(6):827-44. PMC: 3591674. DOI: 10.1210/er.2010-0026. View

5.
Wang Z, Jiang Z, Lu R, Kou L, Zhao Y, Yao Q . Formulation strategies to provide oxygen-release to contrast local hypoxia for transplanted islets. Eur J Pharm Biopharm. 2023; 187:130-140. DOI: 10.1016/j.ejpb.2023.04.015. View