Epigenetic Reprogramming Driving Successful and Failed Repair in Acute Kidney Injury
Authors
Affiliations
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.
Xia Y, Ye Z, Li B, Yan X, Yuan T, Li L Commun Biol. 2025; 8(1):286.
PMID: 39987296 PMC: 11846861. DOI: 10.1038/s42003-025-07735-3.
Multiomics profiling of mouse polycystic kidney disease progression at a single-cell resolution.
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward O Proc Natl Acad Sci U S A. 2024; 121(43):e2410830121.
PMID: 39405347 PMC: 11513963. DOI: 10.1073/pnas.2410830121.
The Kidney Precision Medicine Project and Single-Cell Biology of the Injured Proximal Tubule.
Janosevic D, De Luca T, Eadon M Am J Pathol. 2024; 195(1):7-22.
PMID: 39332674 PMC: 11686451. DOI: 10.1016/j.ajpath.2024.09.006.
Multi-omics profiling of mouse polycystic kidney disease progression at a single cell resolution.
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward O bioRxiv. 2024; .
PMID: 38854144 PMC: 11160654. DOI: 10.1101/2024.05.27.595830.