6.
Angelini L, Hodgkinson W, Smith C, Dodd J, Sharrack B, Mazza C
. Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting. J Neurol. 2020; 267(10):2897-2909.
PMC: 7501113.
DOI: 10.1007/s00415-020-09928-8.
View
7.
Cleland C, Ferguson S, Ellis G, Hunter R
. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. BMC Med Res Methodol. 2018; 18(1):176.
PMC: 6303992.
DOI: 10.1186/s12874-018-0642-3.
View
8.
Butland R, Pang J, Gross E, Woodcock A, Geddes D
. Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed). 1982; 284(6329):1607-8.
PMC: 1498516.
DOI: 10.1136/bmj.284.6329.1607.
View
9.
Chen S, Lach J, Lo B, Yang G
. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J Biomed Health Inform. 2017; 20(6):1521-1537.
DOI: 10.1109/JBHI.2016.2608720.
View
10.
Choi L, Liu Z, Matthews C, Buchowski M
. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2010; 43(2):357-64.
PMC: 3184184.
DOI: 10.1249/MSS.0b013e3181ed61a3.
View
11.
Grimpampi E, Oesen S, Halper B, Hofmann M, Wessner B, Mazza C
. Reliability of gait variability assessment in older individuals during a six-minute walk test. J Biomech. 2015; 48(15):4185-4189.
DOI: 10.1016/j.jbiomech.2015.10.008.
View
12.
Schrack J, Kuo P, Wanigatunga A, Di J, Simonsick E, Spira A
. Active-to-Sedentary Behavior Transitions, Fatigability, and Physical Functioning in Older Adults. J Gerontol A Biol Sci Med Sci. 2018; 74(4):560-567.
PMC: 6417447.
DOI: 10.1093/gerona/gly243.
View
13.
Dawson N, Dzurino D, Karleskint M, Tucker J
. Examining the reliability, correlation, and validity of commonly used assessment tools to measure balance. Health Sci Rep. 2019; 1(12):e98.
PMC: 6295615.
DOI: 10.1002/hsr2.98.
View
14.
Hays R, Bjorner J, Revicki D, Spritzer K, Cella D
. Development of physical and mental health summary scores from the patient-reported outcomes measurement information system (PROMIS) global items. Qual Life Res. 2009; 18(7):873-80.
PMC: 2724630.
DOI: 10.1007/s11136-009-9496-9.
View
15.
Konig N, Singh N, Baumann C, Taylor W
. Can Gait Signatures Provide Quantitative Measures for Aiding Clinical Decision-Making? A Systematic Meta-Analysis of Gait Variability Behavior in Patients with Parkinson's Disease. Front Hum Neurosci. 2016; 10:319.
PMC: 4927578.
DOI: 10.3389/fnhum.2016.00319.
View
16.
Almeida V, Ferreira A, Guimaraes F, Papathanasiou J, Lopes A
. Predictive models for the six-minute walk test considering the walking course and physical activity level. Eur J Phys Rehabil Med. 2019; 55(6):824-833.
DOI: 10.23736/S1973-9087.19.05687-9.
View
17.
Qiao Y, Harezlak J, Moored K, Urbanek J, Boudreau R, Toto P
. Development of a Novel Accelerometry-Based Performance Fatigability Measure for Older Adults. Med Sci Sports Exerc. 2022; 54(10):1782-1793.
PMC: 9481701.
DOI: 10.1249/MSS.0000000000002966.
View
18.
Wu X, Nussbaum M, Madigan M
. Executive Function and Measures of Fall Risk Among People With Obesity. Percept Mot Skills. 2016; 122(3):825-39.
DOI: 10.1177/0031512516646158.
View
19.
Storm F, Cesareo A, Reni G, Biffi E
. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. Sensors (Basel). 2020; 20(9).
PMC: 7249076.
DOI: 10.3390/s20092660.
View
20.
Li J, Li X, Deng M, Liang X, Wei H, Wu X
. Features and predictive value of 6-min walk test outcomes in interstitial lung disease: an observation study using wearable monitors. BMJ Open. 2022; 12(6):e055077.
PMC: 9204441.
DOI: 10.1136/bmjopen-2021-055077.
View