6.
Zou C, Karn A, Reisch B, Nguyen A, Sun Y, Bao Y
. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nat Commun. 2020; 11(1):413.
PMC: 6972940.
DOI: 10.1038/s41467-019-14280-1.
View
7.
Gadoury D, Cadle-Davidson L, Wilcox W, Dry I, Seem R, Milgroom M
. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol. 2011; 13(1):1-16.
PMC: 6638670.
DOI: 10.1111/j.1364-3703.2011.00728.x.
View
8.
Fischer B, Salakhutdinov I, Akkurt M, Eibach R, Edwards K, Topfer R
. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet. 2003; 108(3):501-15.
DOI: 10.1007/s00122-003-1445-3.
View
9.
Vezzulli S, Malacarne G, Masuero D, Vecchione A, Dolzani C, Goremykin V
. The Haplotype and Stilbenoid Induction Mediate Downy Mildew Resistance in a Grapevine Interspecific Population. Front Plant Sci. 2019; 10:234.
PMC: 6414455.
DOI: 10.3389/fpls.2019.00234.
View
10.
Riaz S, Tenscher A, Rubin J, Graziani R, Pao S, Walker M
. Fine-scale genetic mapping of two Pierce's disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet. 2008; 117(5):671-81.
DOI: 10.1007/s00122-008-0802-7.
View
11.
Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A, Cipriani G
. Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet. 2009; 120(1):163-76.
DOI: 10.1007/s00122-009-1167-2.
View
12.
Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D
. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One. 2013; 8(4):e61228.
PMC: 3625174.
DOI: 10.1371/journal.pone.0061228.
View
13.
Possamai T, Wiedemann-Merdinoglu S, Merdinoglu D, Migliaro D, De Mori G, Cipriani G
. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC Plant Biol. 2021; 21(1):528.
PMC: 8582213.
DOI: 10.1186/s12870-021-03174-4.
View
14.
Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z
. Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet. 2007; 116(3):427-38.
DOI: 10.1007/s00122-007-0680-4.
View
15.
Possamai T, Wiedemann-Merdinoglu S
. Phenotyping for QTL identification: A case study of resistance to and in grapevine. Front Plant Sci. 2022; 13:930954.
PMC: 9403010.
DOI: 10.3389/fpls.2022.930954.
View
16.
Culley T, Stamper T, Stokes R, Brzyski J, Hardiman N, Klooster M
. An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl Plant Sci. 2014; 1(10).
PMC: 4103466.
DOI: 10.3732/apps.1300027.
View
17.
Collard B, Mackill D
. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2007; 363(1491):557-72.
PMC: 2610170.
DOI: 10.1098/rstb.2007.2170.
View
18.
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L
. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front Public Health. 2016; 4:148.
PMC: 4947579.
DOI: 10.3389/fpubh.2016.00148.
View
19.
Kim C, Guo H, Kong W, Chandnani R, Shuang L, Paterson A
. Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci. 2015; 242:14-22.
DOI: 10.1016/j.plantsci.2015.04.016.
View
20.
Di Gaspero G, Copetti D, Coleman C, Castellarin S, Eibach R, Kozma P
. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet. 2011; 124(2):277-86.
DOI: 10.1007/s00122-011-1703-8.
View