» Articles » PMID: 39037654

Modeling the Depth of Cellular Dormancy from RNA-Sequencing Data

Overview
Specialty Molecular Biology
Date 2024 Jul 22
PMID 39037654
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput transcriptome RNA sequencing is a powerful tool for understanding dynamic biological processes. Here, we present a computational framework, implemented in an R package QDSWorkflow, to characterize heterogeneous cellular dormancy depth using RNA-sequencing data from bulk samples and single cells.

Citing Articles

Quiescence-Origin Senescence: A New Paradigm in Cellular Aging.

Yao G Biomedicines. 2024; 12(8).

PMID: 39200301 PMC: 11351160. DOI: 10.3390/biomedicines12081837.

References
1.
Sender R, Milo R . The distribution of cellular turnover in the human body. Nat Med. 2021; 27(1):45-48. DOI: 10.1038/s41591-020-01182-9. View

2.
Coller H, Sang L, Roberts J . A new description of cellular quiescence. PLoS Biol. 2006; 4(3):e83. PMC: 1393757. DOI: 10.1371/journal.pbio.0040083. View

3.
Yao G . Modelling mammalian cellular quiescence. Interface Focus. 2014; 4(3):20130074. PMC: 3996586. DOI: 10.1098/rsfs.2013.0074. View

4.
Augenlicht L, Baserga R . Changes in the G0 state of WI-38 fibroblasts at different times after confluence. Exp Cell Res. 1974; 89(2):255-62. DOI: 10.1016/0014-4827(74)90789-7. View

5.
Martin R, Stein S . Resting state in normal and simian virus 40 transformed Chinese hamster lung cells. Proc Natl Acad Sci U S A. 1976; 73(5):1655-9. PMC: 430358. DOI: 10.1073/pnas.73.5.1655. View