Modeling the Depth of Cellular Dormancy from RNA-Sequencing Data
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
High-throughput transcriptome RNA sequencing is a powerful tool for understanding dynamic biological processes. Here, we present a computational framework, implemented in an R package QDSWorkflow, to characterize heterogeneous cellular dormancy depth using RNA-sequencing data from bulk samples and single cells.
Citing Articles
Quiescence-Origin Senescence: A New Paradigm in Cellular Aging.
Yao G Biomedicines. 2024; 12(8).
PMID: 39200301 PMC: 11351160. DOI: 10.3390/biomedicines12081837.
References
1.
Sender R, Milo R
. The distribution of cellular turnover in the human body. Nat Med. 2021; 27(1):45-48.
DOI: 10.1038/s41591-020-01182-9.
View
2.
Coller H, Sang L, Roberts J
. A new description of cellular quiescence. PLoS Biol. 2006; 4(3):e83.
PMC: 1393757.
DOI: 10.1371/journal.pbio.0040083.
View
3.
Yao G
. Modelling mammalian cellular quiescence. Interface Focus. 2014; 4(3):20130074.
PMC: 3996586.
DOI: 10.1098/rsfs.2013.0074.
View
4.
Augenlicht L, Baserga R
. Changes in the G0 state of WI-38 fibroblasts at different times after confluence. Exp Cell Res. 1974; 89(2):255-62.
DOI: 10.1016/0014-4827(74)90789-7.
View
5.
Martin R, Stein S
. Resting state in normal and simian virus 40 transformed Chinese hamster lung cells. Proc Natl Acad Sci U S A. 1976; 73(5):1655-9.
PMC: 430358.
DOI: 10.1073/pnas.73.5.1655.
View