» Articles » PMID: 39036067

Rapid, Multiplexed, and Enzyme-Free Nucleic Acid Detection Using Programmable Aptamer-Based RNA Switches

Abstract

Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. We describe a class of aptamer-based RNA switches or aptaswitches that recognize target nucleic acid molecules and initiate folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide an intense fluorescent readout without intervening enzymes, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. Aptaswitches can be used to regulate folding of seven fluorogenic aptamers, providing a general means of controlling aptamers and an array of multiplexable reporter colors. Coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/μL in one-pot reactions. Application of multiplexed all-in-one reactions against RNA from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that are readily integrated into rapid diagnostic assays.

Citing Articles

Challenges in observing transcription-translation for bottom-up synthetic biology.

Bogatyr V, Wuite G QRB Discov. 2025; 6:e5.

PMID: 39944880 PMC: 11811876. DOI: 10.1017/qrd.2024.27.


Artificial dynamic structure ensemble-guided rational design of a universal RNA aptamer-based sensing tag.

Hou J, Guo P, Wang J, Han D, Tan W Proc Natl Acad Sci U S A. 2024; 121(52):e2414793121.

PMID: 39705306 PMC: 11670126. DOI: 10.1073/pnas.2414793121.


Conditional RNA interference in mammalian cells via RNA transactivation.

Zhou Y, Sheng P, Li J, Li Y, Xie M, Green A Nat Commun. 2024; 15(1):6855.

PMID: 39127751 PMC: 11316766. DOI: 10.1038/s41467-024-50600-w.

References
1.
Xia S, Chen X . Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA. Cell Discov. 2020; 6(1):37. PMC: 7253471. DOI: 10.1038/s41421-020-0175-x. View

2.
Song W, Filonov G, Kim H, Hirsch M, Li X, Moon J . Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol. 2017; 13(11):1187-1194. PMC: 5679246. DOI: 10.1038/nchembio.2477. View

3.
You M, Litke J, Wu R, Jaffrey S . Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator. Cell Chem Biol. 2019; 26(4):471-481.e3. PMC: 6474789. DOI: 10.1016/j.chembiol.2019.01.005. View

4.
Ma D, Shen L, Wu K, Diehnelt C, Green A . Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol (Oxf). 2018; 3(1):ysy018. PMC: 6195790. DOI: 10.1093/synbio/ysy018. View

5.
Aw S, Tang M, Teo Y, Cohen S . A conformation-induced fluorescence method for microRNA detection. Nucleic Acids Res. 2016; 44(10):e92. PMC: 4889923. DOI: 10.1093/nar/gkw108. View