» Articles » PMID: 30773480

Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator

Overview
Journal Cell Chem Biol
Publisher Cell Press
Specialty Biochemistry
Date 2019 Feb 19
PMID 30773480
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Genetically encoded biosensors are useful tools for detecting the presence and levels of diverse biomolecules in living cells. However, low-abundance targets are difficult to detect because they are often unable to bind and activate enough biosensors to detect using standard microscopic imaging approaches. Here we describe a type of RNA-based biosensor, an RNA integrator, which enables detection of low-abundance targets in vitro and in living cells. The RNA integrator is an RNA sequence comprising a ribozyme and an unfolded form of the fluorogenic aptamer Broccoli. Upon binding its target, the ribozyme undergoes cleavage and releases Broccoli, which subsequently folds and becomes fluorescent. Importantly, each target molecule can bind and induce cleavage of multiple copies of the integrator sensor, resulting in an amplified signal. We show that this approach can be generalized to numerous different ribozyme types for the detection of various small molecules.

Citing Articles

Quencher-Free Fluorescence Monitoring of G-Quadruplex Folding.

Parada Z, Hoog T, Adamala K, Engelhart A ACS Omega. 2025; 10(3):3176-3181.

PMID: 39895733 PMC: 11780409. DOI: 10.1021/acsomega.4c10720.


Artificial dynamic structure ensemble-guided rational design of a universal RNA aptamer-based sensing tag.

Hou J, Guo P, Wang J, Han D, Tan W Proc Natl Acad Sci U S A. 2024; 121(52):e2414793121.

PMID: 39705306 PMC: 11670126. DOI: 10.1073/pnas.2414793121.


Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives.

Kehrli J, Husser C, Ryckelynck M Biosensors (Basel). 2024; 14(8).

PMID: 39194605 PMC: 11352751. DOI: 10.3390/bios14080376.


Rapid, Multiplexed, and Enzyme-Free Nucleic Acid Detection Using Programmable Aptamer-Based RNA Switches.

Yan Z, Eshed A, Tang A, Arevalos N, Ticktin Z, Chaudhary S Chem. 2024; 10(7):2220-2244.

PMID: 39036067 PMC: 11259118. DOI: 10.1016/j.chempr.2024.03.015.


An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

Pietruschka G, Ranzani A, Weber A, Patwari T, Pilsl S, Renzl C Adv Sci (Weinh). 2024; 11(12):e2304519.

PMID: 38227373 PMC: 10966536. DOI: 10.1002/advs.202304519.


References
1.
Grubbs R . Intracellular magnesium and magnesium buffering. Biometals. 2002; 15(3):251-9. DOI: 10.1023/a:1016026831789. View

2.
Ketzer P, Kaufmann J, Engelhardt S, Bossow S, von Kalle C, Hartig J . Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A. 2014; 111(5):E554-62. PMC: 3918795. DOI: 10.1073/pnas.1318563111. View

3.
Kellenberger C, Wilson S, Sales-Lee J, Hammond M . RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc. 2013; 135(13):4906-9. PMC: 3775879. DOI: 10.1021/ja311960g. View

4.
Rueda D, Walter N . Fluorescent energy transfer readout of an aptazyme-based biosensor. Methods Mol Biol. 2006; 335:289-310. DOI: 10.1385/1-59745-069-3:289. View

5.
Birikh K, Heaton P, Eckstein F . The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997; 245(1):1-16. DOI: 10.1111/j.1432-1033.1997.t01-3-00001.x. View