» Articles » PMID: 38941464

A Genome Scale Transcriptional Regulatory Model of the Human Placenta

Abstract

Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.

Citing Articles

Advanced multi-modal mass spectrometry imaging reveals functional differences of placental villous compartments at microscale resolution.

Velickovic M, Kadam L, Kim J, Zemaitis K, Velickovic D, Gao Y Nat Commun. 2025; 16(1):2061.

PMID: 40021619 PMC: 11871073. DOI: 10.1038/s41467-025-57107-y.


A transcriptomic comparison of in vitro models of the human placenta.

Lapehn S, Nair S, Firsick E, MacDonald J, Thoreson C, Litch J Placenta. 2024; 159:52-61.

PMID: 39637677 PMC: 11857522. DOI: 10.1016/j.placenta.2024.11.007.


Associations Between Prenatal Vitamin D and Placental Gene Expression.

Parenti M, Melough M, Lapehn S, MacDonald J, Bammler T, Firsick E J Nutr. 2024; 154(12):3603-3614.

PMID: 39401684 PMC: 11662243. DOI: 10.1016/j.tjnut.2024.10.019.


Transcriptomic comparison of in vitro models of the human placenta.

Lapehn S, Nair S, Firsick E, MacDonald J, Thoreson C, Litch J bioRxiv. 2024; .

PMID: 38915703 PMC: 11195179. DOI: 10.1101/2024.06.14.598695.


Associations Between Prenatal Vitamin D and Placental Gene Expression.

Parenti M, Melough M, Lapehn S, MacDonald J, Bammler T, Firsick E bioRxiv. 2024; .

PMID: 38765981 PMC: 11100832. DOI: 10.1101/2024.05.10.593571.

References
1.
Sung J, Wang Y, Chandrasekaran S, Witten D, Price N . Molecular signatures from omics data: from chaos to consensus. Biotechnol J. 2012; 7(8):946-57. PMC: 3418428. DOI: 10.1002/biot.201100305. View

2.
Cox B, Leavey K, Nosi U, Wong F, Kingdom J . Placental transcriptome in development and pathology: expression, function, and methods of analysis. Am J Obstet Gynecol. 2015; 213(4 Suppl):S138-51. DOI: 10.1016/j.ajog.2015.07.046. View

3.
Buccitelli C, Selbach M . mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet. 2020; 21(10):630-644. DOI: 10.1038/s41576-020-0258-4. View

4.
Liu Y, Ding D, Liu H, Sun X . The accessible chromatin landscape during conversion of human embryonic stem cells to trophoblast by bone morphogenetic protein 4. Biol Reprod. 2017; 96(6):1267-1278. DOI: 10.1093/biolre/iox028. View

5.
Norman J . Progesterone and preterm birth. Int J Gynaecol Obstet. 2020; 150(1):24-30. PMC: 8453855. DOI: 10.1002/ijgo.13187. View