6.
Makarova K, Wolf Y, Iranzo J, Shmakov S, Alkhnbashi O, Brouns S
. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2019; 18(2):67-83.
PMC: 8905525.
DOI: 10.1038/s41579-019-0299-x.
View
7.
Koonin E, Makarova K
. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci. 2019; 374(1772):20180087.
PMC: 6452270.
DOI: 10.1098/rstb.2018.0087.
View
8.
Poovorawan K, Chatsuwan T, Lakananurak N, Chansaenroj J, Komolmit P, Poovorawan Y
. Shewanella haliotis associated with severe soft tissue infection, Thailand, 2012. Emerg Infect Dis. 2013; 19(6):1019-21.
PMC: 3713828.
DOI: 10.3201/eid1906.121607.
View
9.
Deem M
. CRISPR recognizes as many phage types as possible without overwhelming the Cas machinery. Proc Natl Acad Sci U S A. 2020; 117(14):7550-7552.
PMC: 7148558.
DOI: 10.1073/pnas.2002746117.
View
10.
Li S, Cheng Q, Wang J, Li X, Zhang Z, Gao S
. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018; 4:20.
PMC: 5913299.
DOI: 10.1038/s41421-018-0028-z.
View
11.
Liu Z, Dong H, Cui Y, Cong L, Zhang D
. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact. 2020; 19(1):172.
PMC: 7470686.
DOI: 10.1186/s12934-020-01431-z.
View
12.
Tseng S, Liu P, Lee Y, Wu Z, Huang C, Cheng C
. The Pathogenicity of and Ability to Tolerate a Wide Range of Temperatures and Salinities. Can J Infect Dis Med Microbiol. 2018; 2018:6976897.
PMC: 6180972.
DOI: 10.1155/2018/6976897.
View
13.
Huang Z, Yu K, Fu S, Xiao Y, Wei Q, Wang D
. Genomic analysis reveals high intra-species diversity of . Microb Genom. 2022; 8(2).
PMC: 8942018.
DOI: 10.1099/mgen.0.000786.
View
14.
Chen Y, Liu Y, Yen M, Wang J, Wann S, Cheng D
. Skin and soft-tissue manifestations of Shewanella putrefaciens infection. Clin Infect Dis. 1997; 25(2):225-9.
DOI: 10.1086/514537.
View
15.
Zhang F, Zhao S, Ren C, Zhu Y, Zhou H, Lai Y
. CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun Biol. 2018; 1:180.
PMC: 6208339.
DOI: 10.1038/s42003-018-0184-6.
View
16.
Xue C, Sashital D
. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in . EcoSal Plus. 2019; 8(2).
PMC: 6368399.
DOI: 10.1128/ecosalplus.ESP-0008-2018.
View
17.
Dion M, Plante P, Zufferey E, Shah S, Corbeil J, Moineau S
. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res. 2021; 49(6):3127-3138.
PMC: 8034630.
DOI: 10.1093/nar/gkab133.
View
18.
Szeinbaum N, Kellum C, Glass J, Janda J, DiChristina T
. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990. Int J Syst Evol Microbiol. 2018; 68(4):1356-1360.
DOI: 10.1099/ijsem.0.002678.
View
19.
Horvath P, Romero D, Coute-Monvoisin A, Richards M, Deveau H, Moineau S
. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2007; 190(4):1401-12.
PMC: 2238196.
DOI: 10.1128/JB.01415-07.
View
20.
Huang W, Teng L, Yeh T, Chen Y, Lo W, Wu M
. 2019 novel coronavirus disease (COVID-19) in Taiwan: Reports of two cases from Wuhan, China. J Microbiol Immunol Infect. 2020; 53(3):481-484.
PMC: 7102546.
DOI: 10.1016/j.jmii.2020.02.009.
View