6.
Bommana S, Jelocnik M, Borel N, Marsh I, Carver S, Polkinghorne A
. The limitations of commercial serological assays for detection of chlamydial infections in Australian livestock. J Med Microbiol. 2019; 68(4):627-632.
DOI: 10.1099/jmm.0.000951.
View
7.
Zhu C, Lv M, Huang J, Zhang C, Xie L, Gao T
. Bloodstream infection and pneumonia caused by Chlamydia abortus infection in China: a case report. BMC Infect Dis. 2022; 22(1):181.
PMC: 8867867.
DOI: 10.1186/s12879-022-07158-z.
View
8.
Clemmons N, Jordan N, Brown A, Kough E, Pacha L, Varner S
. Outbreak of Chlamydia pneumoniae Infections and X-ray-Confirmed Pneumonia in Army Trainees at Fort Leonard Wood, Missouri, 2014. Mil Med. 2019; 184(7-8):e196-e199.
DOI: 10.1093/milmed/usy402.
View
9.
Chen X, Cao K, Wei Y, Qian Y, Liang J, Dong D
. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci. Infection. 2020; 48(4):535-542.
PMC: 7223968.
DOI: 10.1007/s15010-020-01429-0.
View
10.
Hogerwerf L, de Gier B, Baan B, van der Hoek W
. Chlamydia psittaci (psittacosis) as a cause of community-acquired pneumonia: a systematic review and meta-analysis. Epidemiol Infect. 2017; 145(15):3096-3105.
PMC: 9148753.
DOI: 10.1017/S0950268817002060.
View
11.
Liu S, Li K, Hsieh M, Chang P, Shien J, Ou S
. Prevalence and Genotyping of from Domestic Waterfowl, Companion Birds, and Wild Birds in Taiwan. Vector Borne Zoonotic Dis. 2019; 19(9):666-673.
DOI: 10.1089/vbz.2018.2403.
View
12.
Xie G, Hu Q, Cao X, Wu W, Dai P, Guo W
. Clinical identification and microbiota analysis of and pneumonia by metagenomic next-generation sequencing. Front Cell Infect Microbiol. 2023; 13:1157540.
PMC: 10331293.
DOI: 10.3389/fcimb.2023.1157540.
View
13.
Zhou X, Bai G, Dong L, Zhuang H, Duan M
. Successful Treatment of Severe Community-Acquired Pneumonia caused by Chlamydia Psittaci: a Case Report. Clin Lab. 2022; 68(5).
DOI: 10.7754/Clin.Lab.2021.211127.
View
14.
Ndengu M, Matope G, Tivapasi M, Scacchia M, Bonfini B, Pfukenyi D
. Sero-prevalence of chlamydiosis in cattle and selected wildlife species at a wildlife/livestock interface area of Zimbabwe. Trop Anim Health Prod. 2018; 50(5):1107-1117.
DOI: 10.1007/s11250-018-1536-4.
View
15.
Roberts W, Grist N, Giroud P
. Human abortion associated with infection by ovine abortion agent. Br Med J. 1967; 4(5570):37.
PMC: 1748820.
DOI: 10.1136/bmj.4.5570.37.
View
16.
Turin L, Surini S, Wheelhouse N, Rocchi M
. Recent advances and public health implications for environmental exposure to Chlamydia abortus: from enzootic to zoonotic disease. Vet Res. 2022; 53(1):37.
PMC: 9152823.
DOI: 10.1186/s13567-022-01052-x.
View
17.
Unemo M, Bradshaw C, Hocking J, de Vries H, Francis S, Mabey D
. Sexually transmitted infections: challenges ahead. Lancet Infect Dis. 2017; 17(8):e235-e279.
DOI: 10.1016/S1473-3099(17)30310-9.
View
18.
Galle J, Fechtner T, Eierhoff T, Romer W, Hegemann J
. A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells. Nat Commun. 2019; 10(1):4644.
PMC: 6789132.
DOI: 10.1038/s41467-019-12419-8.
View
19.
Longbottom D, Coulter L
. Animal chlamydioses and zoonotic implications. J Comp Pathol. 2003; 128(4):217-44.
DOI: 10.1053/jcpa.2002.0629.
View
20.
Liu S, Cui Z, Carr M, Meng L, Shi W, Zhang Z
. Chlamydia psittaci should be a notifiable infectious disease everywhere. Lancet Microbe. 2022; 4(2):e62-e63.
DOI: 10.1016/S2666-5247(22)00306-8.
View