6.
Cheung N, Tian L, Liu X, Li X
. The Destructive Fungal Pathogen -Insights from Genes Studied with Mutant Analysis. Pathogens. 2020; 9(11).
PMC: 7695001.
DOI: 10.3390/pathogens9110923.
View
7.
Gilbertson L, Pourzahedi L, Laughton S, Gao X, Zimmerman J, Theis T
. Guiding the design space for nanotechnology to advance sustainable crop production. Nat Nanotechnol. 2020; 15(9):801-810.
DOI: 10.1038/s41565-020-0706-5.
View
8.
Zheng Y, Hong H, Chen L, Li J, Sheng J, Shen L
. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit. J Agric Food Chem. 2014; 62(6):1390-6.
DOI: 10.1021/jf404870d.
View
9.
Ayilara M, Adeleke B, Akinola S, Fayose C, Adeyemi U, Gbadegesin L
. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol. 2023; 14:1040901.
PMC: 9978502.
DOI: 10.3389/fmicb.2023.1040901.
View
10.
Conrath U
. Systemic acquired resistance. Plant Signal Behav. 2009; 1(4):179-84.
PMC: 2634024.
DOI: 10.4161/psb.1.4.3221.
View
11.
Schiavi D, Balbi R, Giovagnoli S, Camaioni E, Botticella E, Sestili F
. A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. Nanomaterials (Basel). 2021; 11(7).
PMC: 8308196.
DOI: 10.3390/nano11071852.
View
12.
Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J
. Exogenous Nitric Oxide Enhances Disease Resistance by Nitrosylation and Inhibition of -Nitrosoglutathione Reductase in Peach Fruit. Front Plant Sci. 2020; 11:543.
PMC: 7326068.
DOI: 10.3389/fpls.2020.00543.
View
13.
Riccio D, Schoenfisch M
. Nitric oxide release: part I. Macromolecular scaffolds. Chem Soc Rev. 2012; 41(10):3731-41.
PMC: 3341515.
DOI: 10.1039/c2cs15272j.
View
14.
Yang L, Feura E, Ahonen M, Schoenfisch M
. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater. 2018; 7(13):e1800155.
PMC: 6159924.
DOI: 10.1002/adhm.201800155.
View
15.
Liu Y, Yang X, Simmons G
. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples. Insects. 2016; 7(4).
PMC: 5198219.
DOI: 10.3390/insects7040071.
View
16.
Wendehenne D, Pugin A, Klessig D, Durner J
. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001; 6(4):177-83.
DOI: 10.1016/s1360-1385(01)01893-3.
View
17.
Raiola A, Rigano M, Calafiore R, Frusciante L, Barone A
. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators Inflamm. 2014; 2014:139873.
PMC: 3972926.
DOI: 10.1155/2014/139873.
View
18.
Carpenter A, Schoenfisch M
. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev. 2012; 41(10):3742-52.
PMC: 3341526.
DOI: 10.1039/c2cs15273h.
View
19.
Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W
. Melatonin Induces Disease Resistance to Botrytis cinerea in Tomato Fruit by Activating Jasmonic Acid Signaling Pathway. J Agric Food Chem. 2019; 67(22):6116-6124.
DOI: 10.1021/acs.jafc.9b00058.
View
20.
Kowalska-Krochmal B, Dudek-Wicher R
. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021; 10(2).
PMC: 7913839.
DOI: 10.3390/pathogens10020165.
View