» Articles » PMID: 38877315

The Tidyomics Ecosystem: Enhancing Omic Data Analyses

Abstract

The growth of omic data presents evolving challenges in data manipulation, analysis and integration. Addressing these challenges, Bioconductor provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming offers a revolutionary data organization and manipulation standard. Here we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analyzing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas, spanning six data frameworks and ten analysis tools.

Citing Articles

Geospatially informed representation of spatial genomics data with SpatialFeatureExperiment.

Moses L, Huseynov A, Rich J, Pachter L bioRxiv. 2025; .

PMID: 40060564 PMC: 11888365. DOI: 10.1101/2025.02.24.640007.


From Omics to Multi-Omics: A Review of Advantages and Tradeoffs.

Hayes C, Nakahara H, Ono A, Tsuge M, Oka S Genes (Basel). 2025; 15(12.

PMID: 39766818 PMC: 11675490. DOI: 10.3390/genes15121551.


SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative.

Kulski J, Pfaff A, Koks S Genes (Basel). 2024; 15(9).

PMID: 39336776 PMC: 11431313. DOI: 10.3390/genes15091185.


Epigenomics coverage data extraction and aggregation in R with tidyCoverage.

Serizay J, Koszul R Bioinformatics. 2024; 40(8).

PMID: 39073878 PMC: 11322045. DOI: 10.1093/bioinformatics/btae487.


A multi-organ map of the human immune system across age, sex and ethnicity.

Mangiola S, Milton M, Ranathunga N, Li-Wai-Suen C, Odainic A, Yang E bioRxiv. 2024; .

PMID: 38746418 PMC: 11092463. DOI: 10.1101/2023.06.08.542671.


References
1.
Tarazona S, Arzalluz-Luque A, Conesa A . Undisclosed, unmet and neglected challenges in multi-omics studies. Nat Comput Sci. 2024; 1(6):395-402. DOI: 10.1038/s43588-021-00086-z. View

2.
Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S . Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5(10):R80. PMC: 545600. DOI: 10.1186/gb-2004-5-10-r80. View

3.
Lee S, Cook D, Lawrence M . plyranges: a grammar of genomic data transformation. Genome Biol. 2019; 20(1):4. PMC: 6320618. DOI: 10.1186/s13059-018-1597-8. View

4.
Mangiola S, Molania R, Dong R, Doyle M, Papenfuss A . tidybulk: an R tidy framework for modular transcriptomic data analysis. Genome Biol. 2021; 22(1):42. PMC: 7821481. DOI: 10.1186/s13059-020-02233-7. View

5.
Mu W, Davis E, Lee S, Dozmorov M, Phanstiel D, Love M . bootRanges: flexible generation of null sets of genomic ranges for hypothesis testing. Bioinformatics. 2023; 39(5). PMC: 10159650. DOI: 10.1093/bioinformatics/btad190. View