Tidytof: a User-friendly Framework for Scalable and Reproducible High-dimensional Cytometry Data Analysis
Overview
Affiliations
Summary: While many algorithms for analyzing high-dimensional cytometry data have now been developed, the software implementations of these algorithms remain highly customized-this means that exploring a dataset requires users to learn unique, often poorly interoperable package syntaxes for each step of data processing. To solve this problem, we developed {tidytof}, an open-source R package for analyzing high-dimensional cytometry data using the increasingly popular 'tidy data' interface.
Availability And Implementation: {tidytof} is available at https://github.com/keyes-timothy/tidytof and is released under the MIT license. It is supported on Linux, MS Windows and MacOS. Additional documentation is available at the package website (https://keyes-timothy.github.io/tidytof/).
Supplementary Information: Supplementary data are available at online.
Uridine Metabolism as a Targetable Metabolic Achilles' Heel for chemo-resistant B-ALL.
Liu Y, Jiang H, Liu J, Stuani L, Merchant M, Jager A bioRxiv. 2025; .
PMID: 39975156 PMC: 11838334. DOI: 10.1101/2025.01.27.635108.
Unveiling the power of high-dimensional cytometry data with cyCONDOR.
Kroger C, Muller S, Leidner J, Krober T, Warnat-Herresthal S, Spintge J Nat Commun. 2024; 15(1):10702.
PMID: 39702306 PMC: 11659560. DOI: 10.1038/s41467-024-55179-w.
The tidyomics ecosystem: enhancing omic data analyses.
Hutchison W, Keyes T, Crowell H, Serizay J, Soneson C, Davis E Nat Methods. 2024; 21(7):1166-1170.
PMID: 38877315 DOI: 10.1038/s41592-024-02299-2.
The ecosystem: Enhancing omic data analyses.
Hutchison W, Keyes T, Crowell H, Serizay J, Soneson C, Davis E bioRxiv. 2024; .
PMID: 38826347 PMC: 11142095. DOI: 10.1101/2023.09.10.557072.