» Articles » PMID: 38836103

Enhancement of the Internal Quantum Efficiency in Strongly Coupled P3HT-C Organic Photovoltaic Cells Using Fabry-Perot Cavities with Varied Cavity Confinement

Overview
Journal Nanophotonics
Publisher De Gruyter
Date 2024 Jun 5
PMID 38836103
Authors
Affiliations
Soon will be listed here.
Abstract

The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.

Citing Articles

Strong Coupling of Organic Molecules 2023 (SCOM23).

Yuen-Zhou J, Xiong W Nanophotonics. 2024; 13(14):2437-2441.

PMID: 39678653 PMC: 11636515. DOI: 10.1515/nanoph-2024-0260.


Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling.

Mischok A, Siegmund B, Le Roux F, Hillebrandt S, Vandewal K, Gather M Nat Commun. 2024; 15(1):10529.

PMID: 39627203 PMC: 11615041. DOI: 10.1038/s41467-024-54623-1.


Condensation of Exciton-Polaritons in a Bound State in the Continuum: Effects of the Excitation Spot Size and Polariton Transport.

Berghuis A, Boom A, Argante R, Murai S, Gomez Rivas J ACS Nano. 2024; 18(46):31987-31994.

PMID: 39520678 PMC: 11580381. DOI: 10.1021/acsnano.4c09970.


Controlling Plasmonic Catalysis via Strong Coupling with Electromagnetic Resonators.

Fojt J, Erhart P, Schafer C Nano Lett. 2024; 24(38):11913-11920.

PMID: 39264279 PMC: 11440648. DOI: 10.1021/acs.nanolett.4c03153.

References
1.
Feist J, Garcia-Vidal F . Extraordinary exciton conductance induced by strong coupling. Phys Rev Lett. 2015; 114(19):196402. DOI: 10.1103/PhysRevLett.114.196402. View

2.
Lerario G, Ballarini D, Fieramosca A, Cannavale A, Genco A, Mangione F . High-speed flow of interacting organic polaritons. Light Sci Appl. 2018; 6(2):e16212. PMC: 6062184. DOI: 10.1038/lsa.2016.212. View

3.
Nikolis V, Mischok A, Siegmund B, Kublitski J, Jia X, Benduhn J . Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nat Commun. 2019; 10(1):3706. PMC: 6697723. DOI: 10.1038/s41467-019-11717-5. View

4.
Son M, Armstrong Z, Allen R, Dhavamani A, Arnold M, Zanni M . Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat Commun. 2022; 13(1):7305. PMC: 9701200. DOI: 10.1038/s41467-022-35046-2. View

5.
Yadav R, Otten M, Wang W, Cortes C, Gosztola D, Wiederrecht G . Strongly Coupled Exciton-Surface Lattice Resonances Engineer Long-Range Energy Propagation. Nano Lett. 2020; 20(7):5043-5049. DOI: 10.1021/acs.nanolett.0c01236. View