» Articles » PMID: 34183659

A Universal Urbach Rule for Disordered Organic Semiconductors

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Jun 29
PMID 34183659
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

In crystalline semiconductors, absorption onset sharpness is characterized by temperature-dependent Urbach energies. These energies quantify the static, structural disorder causing localized exponential-tail states, and dynamic disorder from electron-phonon scattering. Applicability of this exponential-tail model to disordered solids has been long debated. Nonetheless, exponential fittings are routinely applied to sub-gap absorption analysis of organic semiconductors. Herein, we elucidate the sub-gap spectral line-shapes of organic semiconductors and their blends by temperature-dependent quantum efficiency measurements. We find that sub-gap absorption due to singlet excitons is universally dominated by thermal broadening at low photon energies and the associated Urbach energy equals the thermal energy, regardless of static disorder. This is consistent with absorptions obtained from a convolution of Gaussian density of excitonic states weighted by Boltzmann-like thermally activated optical transitions. A simple model is presented that explains absorption line-shapes of disordered systems, and we also provide a strategy to determine the excitonic disorder energy. Our findings elaborate the meaning of the Urbach energy in molecular solids and relate the photo-physics to static disorder, crucial for optimizing organic solar cells for which we present a revisited radiative open-circuit voltage limit.

Citing Articles

Molecular-dipole oriented universal growth of conjugated polymers into semiconducting single-crystal thin films.

Zhao C, Lai X, Liu D, Guo X, Tian J, Dong Z Nat Commun. 2025; 16(1):1509.

PMID: 39929842 PMC: 11811299. DOI: 10.1038/s41467-025-56757-2.


Insulator-donor electron wavefunction coupling in pseudo-bilayer organic solar cells achieving a certificated efficiency of 19.18.

Sun J, Ma R, Yang X, Xie X, Jiang D, Meng Y Natl Sci Rev. 2025; 12(1):nwae385.

PMID: 39764511 PMC: 11702652. DOI: 10.1093/nsr/nwae385.


A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Shi W, Han Q, Zhu Y, Xia Y, He T, Wang S Natl Sci Rev. 2025; 12(1):nwae409.

PMID: 39764497 PMC: 11702656. DOI: 10.1093/nsr/nwae409.


A 0D Ge(II)-Halide-Based Perovskite with Enhanced Semiconducting Behavior for Electronic Capacitors.

Ben Messaoud E, Abid D, Elleuch S, Oueslati A, Guionneau P, Pechev S ACS Omega. 2024; 9(42):42868-42882.

PMID: 39464455 PMC: 11500373. DOI: 10.1021/acsomega.4c05255.


Direct bandgap quantum wells in hexagonal Silicon Germanium.

Peeters W, van Lange V, Belabbes A, van Hemert M, Jansen M, Farina R Nat Commun. 2024; 15(1):5252.

PMID: 38898007 PMC: 11187182. DOI: 10.1038/s41467-024-49399-3.


References
1.
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B . Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J Am Chem Soc. 2017; 139(21):7148-7151. DOI: 10.1021/jacs.7b02677. View

2.
Zarrabi N, Sandberg O, Zeiske S, Li W, Riley D, Meredith P . Charge-generating mid-gap trap states define the thermodynamic limit of organic photovoltaic devices. Nat Commun. 2020; 11(1):5567. PMC: 7642445. DOI: 10.1038/s41467-020-19434-0. View

3.
Felekidis N, Melianas A, Kemerink M . The Role of Delocalization and Excess Energy in the Quantum Efficiency of Organic Solar Cells and the Validity of Optical Reciprocity Relations. J Phys Chem Lett. 2020; 11(9):3563-3570. DOI: 10.1021/acs.jpclett.0c00945. View

4.
Qian D, Zheng Z, Yao H, Tress W, Hopper T, Chen S . Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat Mater. 2018; 17(8):703-709. DOI: 10.1038/s41563-018-0128-z. View

5.
Ran N, Love J, Takacs C, Sadhanala A, Beavers J, Collins S . Harvesting the Full Potential of Photons with Organic Solar Cells. Adv Mater. 2015; 28(7):1482-8. DOI: 10.1002/adma.201504417. View