» Articles » PMID: 38834893

Mechanisms of Neutralization of ToxSAS from Toxin-antitoxin Modules

Abstract

Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.

Citing Articles

Putting bacteria in alarm.

Loris R Nat Chem Biol. 2024; 21(2):158-159.

PMID: 39639165 DOI: 10.1038/s41589-024-01788-x.


Toxic small alarmone synthetase FaRel2 inhibits translation by pyrophosphorylating tRNA and tRNA.

Kurata T, Takegawa M, Ohira T, Syroegin E, Atkinson G, Johansson M Sci Adv. 2024; 10(46):eadr9624.

PMID: 39536105 PMC: 11559606. DOI: 10.1126/sciadv.adr9624.


Toxic Small Alarmone Synthetase FaRel2 inhibits translation by pyrophosphorylating tRNA and tRNA.

Kurata T, Takegawa M, Ohira T, Syroegin E, Atkinson G, Johansson M bioRxiv. 2024; .

PMID: 39005314 PMC: 11245113. DOI: 10.1101/2024.07.05.602228.

References
1.
Sterckx Y, Jove T, Shkumatov A, Garcia-Pino A, Geerts L, De Kerpel M . A unique hetero-hexadecameric architecture displayed by the Escherichia coli O157 PaaA2-ParE2 antitoxin-toxin complex. J Mol Biol. 2016; 428(8):1589-603. DOI: 10.1016/j.jmb.2016.03.007. View

2.
Steinchen W, Schuhmacher J, Altegoer F, Fage C, Srinivasan V, Linne U . Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc Natl Acad Sci U S A. 2015; 112(43):13348-53. PMC: 4629338. DOI: 10.1073/pnas.1505271112. View

3.
Thorn A . Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX. Methods Mol Biol. 2017; 1607:357-376. DOI: 10.1007/978-1-4939-7000-1_15. View

4.
Saha C, Sanches Pires R, Brolin H, Delannoy M, Atkinson G . FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics. 2020; 37(9):1312-1314. PMC: 8189683. DOI: 10.1093/bioinformatics/btaa788. View

5.
Takada H, Roghanian M, Caballero-Montes J, Van Nerom K, Jimmy S, Kudrin P . Ribosome association primes the stringent factor Rel for tRNA-dependent locking in the A-site and activation of (p)ppGpp synthesis. Nucleic Acids Res. 2020; 49(1):444-457. PMC: 7797070. DOI: 10.1093/nar/gkaa1187. View