6.
Wu B, von der Ecken S, Swyer I, Li C, Jenne A, Vincent F
. Rapid Chemical Reaction Monitoring by Digital Microfluidics-NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angew Chem Int Ed Engl. 2019; 58(43):15372-15376.
DOI: 10.1002/anie.201910052.
View
7.
Jo Y, Lee D
. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small. 2019; 16(9):e1903736.
DOI: 10.1002/smll.201903736.
View
8.
Li L, Liu Y, Wan Y, Li Y, Chen X, Zhao W
. Efficient enzymatic synthesis of guanosine 5'-diphosphate-sugars and derivatives. Org Lett. 2013; 15(21):5528-30.
PMC: 3915774.
DOI: 10.1021/ol402585c.
View
9.
Sabater C, Prodanov M, Olano A, Corzo N, Montilla A
. Quantification of prebiotics in commercial infant formulas. Food Chem. 2015; 194:6-11.
DOI: 10.1016/j.foodchem.2015.07.127.
View
10.
McArthur J, Yu H, Chen X
. A Bacterial β1-3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk Lacto--tetraose (LNT) and Its Fucosides. ACS Catal. 2021; 9(12):10721-10726.
PMC: 7785058.
DOI: 10.1021/acscatal.9b03990.
View
11.
Jebrail M, Ng A, Rai V, Hili R, Yudin A, Wheeler A
. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew Chem Int Ed Engl. 2010; 49(46):8625-9.
DOI: 10.1002/anie.201001604.
View
12.
Ruhaak L, Stroble C, Underwood M, Lebrilla C
. Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem. 2014; 406(24):5775-84.
PMC: 4157097.
DOI: 10.1007/s00216-014-8025-z.
View
13.
Du X, Li Q, Wu G, Chen S
. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Adv Mater. 2019; 31(52):e1903733.
DOI: 10.1002/adma.201903733.
View
14.
Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana M
. Highly efficient chemoenzymatic synthesis of beta1-4-linked galactosides with promiscuous bacterial beta1-4-galactosyltransferases. Chem Commun (Camb). 2010; 46(33):6066-8.
PMC: 3114949.
DOI: 10.1039/c0cc01381a.
View
15.
Ruiz-Palacios G, Cervantes L, Ramos P, Chavez-Munguia B, Newburg D
. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003; 278(16):14112-20.
DOI: 10.1074/jbc.M207744200.
View
16.
Li Y, Yu H, Chen Y, Lau K, Cai L, Cao H
. Substrate promiscuity of N-acetylhexosamine 1-kinases. Molecules. 2011; 16(8):6396-407.
PMC: 6264712.
DOI: 10.3390/molecules16086396.
View
17.
Zhang J, Chen C, Gadi M, Gibbons C, Guo Y, Cao X
. Machine-Driven Enzymatic Oligosaccharide Synthesis by Using a Peptide Synthesizer. Angew Chem Int Ed Engl. 2018; 57(51):16638-16642.
PMC: 6402783.
DOI: 10.1002/anie.201810661.
View
18.
Muthana M, Qu J, Li Y, Zhang L, Yu H, Ding L
. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun (Camb). 2012; 48(21):2728-30.
DOI: 10.1039/c2cc17577k.
View
19.
Donovan S, Comstock S
. Human Milk Oligosaccharides Influence Neonatal Mucosal and Systemic Immunity. Ann Nutr Metab. 2017; 69 Suppl 2:42-51.
PMC: 6392703.
DOI: 10.1159/000452818.
View
20.
Cheng J, Yu H, Lau K, Huang S, Chokhawala H, Li Y
. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology. 2008; 18(9):686-97.
PMC: 2588429.
DOI: 10.1093/glycob/cwn047.
View