» Articles » PMID: 12562767

Campylobacter Jejuni Binds Intestinal H(O) Antigen (Fuc Alpha 1, 2Gal Beta 1, 4GlcNAc), and Fucosyloligosaccharides of Human Milk Inhibit Its Binding and Infection

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2003 Feb 4
PMID 12562767
Citations 242
Authors
Affiliations
Soon will be listed here.
Abstract

The most common cause of infant mortality is diarrhea; the most common cause of bacterial diarrhea is Campylobacter jejuni, which is also the primary cause of motor neuron paralysis. The first step in campylobacter pathogenesis is adherence to intestinal mucosa. We found that such binding was inhibited in vitro by human milk and, with high avidity, by alpha1,2-fucosylated carbohydrate moieties containing the H(O) blood group epitope (Fuc alpha 1,2Gal beta 1,4GlcNAc em leader ). In studies on the mechanism of adherence, campylobacter, which normally does not bind to Chinese hamster ovary cells, bound avidly when the cells were transfected with a human alpha1,2-fucosyltransferase gene that caused overexpression of H-2 antigen; binding was specifically inhibited by H-2 ligands (lectins Ulex europaeus and Lotus tetragonolobus and H-2 monoclonal antibody), H-2 mimetics, and human milk oligosaccharides. Human milk oligosaccharides inhibited campylobacter colonization of mice in vivo and human intestinal mucosa ex vivo. Campylobacter colonization of nursing mouse pups was inhibited if their dams had been transfected with a human alpha1,2-fucosyltransferase gene that caused expression of H(O) antigen in milk. We conclude that campylobacter binding to intestinal H-2 antigen is essential for infection. Milk fucosyloligosaccharides and specific fucosyl alpha1,2-linked molecules inhibit this binding and may represent a novel class of antimicrobial agents.

Citing Articles

Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants.

Sun W, Tao L, Qian C, Xue P, Du S, Tao Y Front Cell Infect Microbiol. 2025; 14():1386421.

PMID: 39835278 PMC: 11743518. DOI: 10.3389/fcimb.2024.1386421.


Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition.

Duman H, Bechelany M, Karav S Nutrients. 2025; 17(1.

PMID: 39796552 PMC: 11723173. DOI: 10.3390/nu17010118.


Consortium of 2029 and 7247 Strains Shows In Vitro Bactericidal Effect on and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction.

Abramov V, Kosarev I, Machulin A, Deryusheva E, Priputnevich T, Panin A Antibiotics (Basel). 2025; 13(12.

PMID: 39766533 PMC: 11672454. DOI: 10.3390/antibiotics13121143.


Human milk oligosaccharides combine with to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action.

Yang S, Cai J, Su Q, Li Q, Meng X Gut Microbes. 2024; 16(1):2430418.

PMID: 39572856 PMC: 11587862. DOI: 10.1080/19490976.2024.2430418.


Fucosylation of glycoproteins and glycolipids: opposing roles in cholera intoxication.

Ghorashi A, Boucher A, Archer-Hartmann S, Zalem D, Taherzadeh Ghahfarrokhi M, Murray N Nat Chem Biol. 2024; .

PMID: 39414978 DOI: 10.1038/s41589-024-01748-5.