6.
Yang Y, Xiao M, Leng L, Jiang S, Feng L, Pan G
. A systematic review and meta-analysis of the prevalence and correlation of mild cognitive impairment in sarcopenia. J Cachexia Sarcopenia Muscle. 2022; 14(1):45-56.
PMC: 9891948.
DOI: 10.1002/jcsm.13143.
View
7.
Su M, Zhang X, Hu W, Yang Z, Chen D, Yang Y
. The associations of erythrocyte membrane polyunsaturated fatty acids with skeletal muscle loss: A prospective cohort study. Clin Nutr. 2023; 42(12):2328-2337.
DOI: 10.1016/j.clnu.2023.09.027.
View
8.
Cruz-Jentoft A, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T
. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018; 48(1):16-31.
PMC: 6322506.
DOI: 10.1093/ageing/afy169.
View
9.
Lawrence G
. Perspective: The Saturated Fat-Unsaturated Oil Dilemma: Relations of Dietary Fatty Acids and Serum Cholesterol, Atherosclerosis, Inflammation, Cancer, and All-Cause Mortality. Adv Nutr. 2021; 12(3):647-656.
PMC: 8166560.
DOI: 10.1093/advances/nmab013.
View
10.
Chang K, Hsu T, Wu W, Huang K, Han D
. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc. 2016; 17(12):1164.e7-1164.e15.
DOI: 10.1016/j.jamda.2016.09.013.
View
11.
Nie Y, Chu C, Qin Q, Shen H, Wen L, Tang Y
. Lipid metabolism and oxidative stress in patients with Alzheimer's disease and amnestic mild cognitive impairment. Brain Pathol. 2023; 34(1):e13202.
PMC: 10711261.
DOI: 10.1111/bpa.13202.
View
12.
Li H, Liu Y, Gong P, Zhang C, Ye J
. Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion. PLoS One. 2014; 9(1):e82450.
PMC: 3885394.
DOI: 10.1371/journal.pone.0082450.
View
13.
Wang X, Xiao R, Li H, Li T, Guan L, Ding H
. Correlation between Mild Cognitive Impairment and Sarcopenia: The Prospective Role of Lipids and Basal Metabolic Rate in the Link. Nutrients. 2022; 14(24).
PMC: 9783732.
DOI: 10.3390/nu14245321.
View
14.
Ma Y, Shen X, Xu W, Huang Y, Li H, Tan L
. A panel of blood lipids associated with cognitive performance, brain atrophy, and Alzheimer's diagnosis: A longitudinal study of elders without dementia. Alzheimers Dement (Amst). 2020; 12(1):e12041.
PMC: 7507431.
DOI: 10.1002/dad2.12041.
View
15.
Qin H, Zhu B, Hu C, Zhao X
. Later-Onset Hypertension Is Associated With Higher Risk of Dementia in Mild Cognitive Impairment. Front Neurol. 2020; 11:557977.
PMC: 7726443.
DOI: 10.3389/fneur.2020.557977.
View
16.
Lipina C, Hundal H
. Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle. 2016; 8(2):190-201.
PMC: 5377414.
DOI: 10.1002/jcsm.12144.
View
17.
Geda Y, Ragossnig M, Roberts L, Roberts R, Pankratz V, Christianson T
. Caloric intake, aging, and mild cognitive impairment: a population-based study. J Alzheimers Dis. 2012; 34(2):501-7.
PMC: 3578975.
DOI: 10.3233/JAD-121270.
View
18.
Dodds R, Murray J, Granic A, Hurst C, Uwimpuhwe G, Richardson S
. Prevalence and factors associated with poor performance in the 5-chair stand test: findings from the Cognitive Function and Ageing Study II and proposed Newcastle protocol for use in the assessment of sarcopenia. J Cachexia Sarcopenia Muscle. 2021; 12(2):308-318.
PMC: 8061374.
DOI: 10.1002/jcsm.12660.
View
19.
Das U
. Saturated Fatty Acids, MUFAs and PUFAs Regulate Ferroptosis. Cell Chem Biol. 2019; 26(3):309-311.
DOI: 10.1016/j.chembiol.2019.03.001.
View
20.
Solfrizzi V, Capurso C, DIntrono A, Colacicco A, Frisardi V, Santamato A
. Dietary fatty acids, age-related cognitive decline, and mild cognitive impairment. J Nutr Health Aging. 2008; 12(6):382-6.
DOI: 10.1007/BF02982670.
View