6.
Ser H, Law J, Chaiyakunapruk N, Jacob S, Palanisamy U, Chan K
. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review. Front Microbiol. 2016; 7:522.
PMC: 4840625.
DOI: 10.3389/fmicb.2016.00522.
View
7.
Dong M, An J, Wang L, Fan X, Lv M, Zhu Y
. Development of fermented chestnut with Bacillus natto: Functional and sensory properties. Food Res Int. 2020; 130:108941.
DOI: 10.1016/j.foodres.2019.108941.
View
8.
Al Loman A, Islam S, Li Q, Ju L
. Soybean bio-refinery platform: enzymatic process for production of soy protein concentrate, soy protein isolate and fermentable sugar syrup. Bioprocess Biosyst Eng. 2016; 39(10):1501-14.
DOI: 10.1007/s00449-016-1626-5.
View
9.
Li L, Liu S, Sun N, Cui W, Cheng L, Ren K
. Effects of sucrase enzymatic hydrolysis combined with Maillard reaction on soy protein hydrolysates: Bitterness and functional properties. Int J Biol Macromol. 2023; 256(Pt 1):128344.
DOI: 10.1016/j.ijbiomac.2023.128344.
View
10.
Rodrigues K, Souza A, Badino A, Pedrolli D, Cerri M
. Screening of medium constituents for clavulanic acid production by Streptomyces clavuligerus. Braz J Microbiol. 2018; 49(4):832-839.
PMC: 6175696.
DOI: 10.1016/j.bjm.2018.01.006.
View
11.
Khelissa S, Chihib N, Gharsallaoui A
. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch Microbiol. 2020; 203(2):465-480.
DOI: 10.1007/s00203-020-02054-z.
View
12.
Feng T, Zhao J, Chu J, Wang Y, Zhuang Y
. Statistical Optimizing of Medium for Clavulanic Acid Production by Streptomyces clavuligerus Using Response Surface Methodology. Appl Biochem Biotechnol. 2021; 193(12):3936-3948.
DOI: 10.1007/s12010-021-03627-4.
View
13.
Jerzsele A, Nagy G
. The stability of amoxicillin trihydrate and potassium clavulanate combination in aqueous solutions. Acta Vet Hung. 2009; 57(4):485-93.
DOI: 10.1556/AVet.57.2009.4.3.
View
14.
Niaz T, Shabbir S, Noor T, Abbasi R, Raza Z, Imran M
. Polyelectrolyte Multicomponent Colloidosomes Loaded with Nisin Z for Enhanced Antimicrobial Activity against Foodborne Resistant Pathogens. Front Microbiol. 2018; 8:2700.
PMC: 5775282.
DOI: 10.3389/fmicb.2017.02700.
View
15.
Delgado S, Sanchez B, Margolles A, Ruas-Madiedo P, Ruiz L
. Molecules Produced by Probiotics and Intestinal Microorganisms with Immunomodulatory Activity. Nutrients. 2020; 12(2).
PMC: 7071221.
DOI: 10.3390/nu12020391.
View
16.
Zhang X, Tong Y, Wang J, Lyu X, Yang R
. Screening of a Bacillus subtilis strain producing both nattokinase and milk-clotting enzyme and its application in fermented milk with thrombolytic activity. J Dairy Sci. 2021; 104(9):9437-9449.
DOI: 10.3168/jds.2020-19756.
View
17.
Gao Y, Hu M, Meng W, Wen W, Zhang P, Fan B
. Study on the quality of soybean proteins fermented by Bacillus subtilis BSNK-5: Insights into nutritional, functional, safety, and flavor properties. Food Chem. 2024; 443:138523.
DOI: 10.1016/j.foodchem.2024.138523.
View
18.
He H, Li Y, Zhang L, Ding Z, Shi G
. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res. 2022; 49:1-14.
PMC: 10334148.
DOI: 10.1016/j.jare.2022.09.003.
View
19.
Sauer M, Russmayer H, Grabherr R, Peterbauer C, Marx H
. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends Biotechnol. 2017; 35(8):756-769.
DOI: 10.1016/j.tibtech.2017.05.002.
View
20.
Zhang Q, Lan G, Tian X, He L, Li C, Tao H
. Effect of Adding BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by GUTU09. Foods. 2022; 11(17).
PMC: 9455604.
DOI: 10.3390/foods11172674.
View