» Articles » PMID: 38743010

Poc1 Bridges Basal Body Inner Junctions to Promote Triplet Microtubule Integrity and Connections

Overview
Journal J Cell Biol
Specialty Cell Biology
Date 2024 May 14
PMID 38743010
Authors
Affiliations
Soon will be listed here.
Abstract

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.

Citing Articles

The structure of basal body inner junctions from Tetrahymena revealed by electron cryo-tomography.

Li S, Fernandez J, Ruehle M, Howard-Till R, Fabritius A, Pearson C EMBO J. 2025; .

PMID: 39994484 DOI: 10.1038/s44318-025-00392-6.


An interaction network of inner centriole proteins organised by POC1A-POC1B heterodimer crosslinks ensures centriolar integrity.

Sala C, Wurtz M, Atorino E, Neuner A, Partscht P, Hoffmann T Nat Commun. 2024; 15(1):9857.

PMID: 39543170 PMC: 11564547. DOI: 10.1038/s41467-024-54247-5.


The Structure of Cilium Inner Junctions Revealed by Electron Cryo-tomography.

Li S, Fernandez J, Ruehle M, Howard-Till R, Fabritius A, Pearson C bioRxiv. 2024; .

PMID: 39314311 PMC: 11419100. DOI: 10.1101/2024.09.09.612100.


Time-series reconstruction of the molecular architecture of human centriole assembly.

Laporte M, Gambarotto D, Bertiaux E, Bournonville L, Louvel V, Nunes J Cell. 2024; 187(9):2158-2174.e19.

PMID: 38604175 PMC: 11060037. DOI: 10.1016/j.cell.2024.03.025.

References
1.
Mercey O, Kostic C, Bertiaux E, Giroud A, Sadian Y, Gaboriau D . The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol. 2022; 20(6):e3001649. PMC: 9202906. DOI: 10.1371/journal.pbio.3001649. View

2.
Hiraki M, Nakazawa Y, Kamiya R, Hirono M . Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr Biol. 2007; 17(20):1778-83. DOI: 10.1016/j.cub.2007.09.021. View

3.
Le Guennec M, Klena N, Gambarotto D, Laporte M, Tassin A, van den Hoek H . A helical inner scaffold provides a structural basis for centriole cohesion. Sci Adv. 2020; 6(7):eaaz4137. PMC: 7021493. DOI: 10.1126/sciadv.aaz4137. View

4.
Gambarotto D, Zwettler F, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S . Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods. 2018; 16(1):71-74. PMC: 6314451. DOI: 10.1038/s41592-018-0238-1. View

5.
Arslanhan M, Cengiz-Emek S, Odabasi E, Steib E, Hamel V, Guichard P . CCDC15 localizes to the centriole inner scaffold and controls centriole length and integrity. J Cell Biol. 2023; 222(12). PMC: 10630097. DOI: 10.1083/jcb.202305009. View