6.
Fiani B, Quadri S, Farooqui M, Cathel A, Berman B, Noel J
. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: A systemic review. Neurosurg Rev. 2018; 43(1):17-25.
DOI: 10.1007/s10143-018-0971-z.
View
7.
Kantelhardt S, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V
. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011; 20(6):860-8.
PMC: 3099153.
DOI: 10.1007/s00586-011-1729-2.
View
8.
Santoni B, Hynes R, McGilvray K, Rodriguez-Canessa G, LYONS A, Henson M
. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2008; 9(5):366-73.
DOI: 10.1016/j.spinee.2008.07.008.
View
9.
Hoffman H, Verhave B, Jalal M, Beutler T, Galgano M, Chin L
. Comparison of Cortical Bone Trajectory Screw Placement Using the Midline Lumbar Fusion Technique to Traditional Pedicle Screws: A Case-Control Study. Int J Spine Surg. 2019; 13(1):33-38.
PMC: 6383460.
DOI: 10.14444/6005.
View
10.
Hung C, Wu M, Hong R, Weng M, Yu G, Kao C
. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg. 2016; 145:41-5.
DOI: 10.1016/j.clineuro.2016.03.005.
View
11.
Matsukawa K, Yato Y
. Lumbar pedicle screw fixation with cortical bone trajectory: A review from anatomical and biomechanical standpoints. Spine Surg Relat Res. 2019; 1(4):164-173.
PMC: 6698564.
DOI: 10.22603/ssrr.1.2017-0006.
View
12.
Baluch D, Patel A, Lullo B, Havey R, Voronov L, Nguyen N
. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine (Phila Pa 1976). 2014; 39(22):E1297-302.
DOI: 10.1097/BRS.0000000000000553.
View
13.
Phan K, Hogan J, Maharaj M, Mobbs R
. Cortical Bone Trajectory for Lumbar Pedicle Screw Placement: A Review of Published Reports. Orthop Surg. 2015; 7(3):213-21.
PMC: 6583742.
DOI: 10.1111/os.12185.
View
14.
Keorochana G, Pairuchvej S, Trathitephun W, Arirachakaran A, Predeeprompan P, Kongtharvonskul J
. Comparative Outcomes of Cortical Screw Trajectory Fixation and Pedicle Screw Fixation in Lumbar Spinal Fusion: Systematic Review and Meta-analysis. World Neurosurg. 2017; 102:340-349.
DOI: 10.1016/j.wneu.2017.03.010.
View
15.
Pfeiffer F, Abernathie D, Smith D
. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine (Phila Pa 1976). 2006; 31(23):E867-70.
DOI: 10.1097/01.brs.0000244658.35865.59.
View
16.
Mizuno M, Kuraishi K, Umeda Y, Sano T, Tsuji M, Suzuki H
. Midline lumbar fusion with cortical bone trajectory screw. Neurol Med Chir (Tokyo). 2014; 54(9):716-21.
PMC: 4533370.
DOI: 10.2176/nmc.st.2013-0395.
View
17.
Kaye I, Prasad S, Vaccaro A, Hilibrand A
. The Cortical Bone Trajectory for Pedicle Screw Insertion. JBJS Rev. 2017; 5(8):e13.
DOI: 10.2106/JBJS.RVW.16.00120.
View
18.
Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K
. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine. 2015; 23(4):471-8.
DOI: 10.3171/2015.1.SPINE141103.
View
19.
Ahern D, Gibbons D, Schroeder G, Vaccaro A, Butler J
. Image-guidance, Robotics, and the Future of Spine Surgery. Clin Spine Surg. 2019; 33(5):179-184.
DOI: 10.1097/BSD.0000000000000809.
View
20.
Zhang L, Tian N, Yang J, Ni W, Jin L
. Risk of pedicle and spinous process violation during cortical bone trajectory screw placement in the lumbar spine. BMC Musculoskelet Disord. 2020; 21(1):536.
PMC: 7422524.
DOI: 10.1186/s12891-020-03535-4.
View