Pharmacological Inhibition of STING Reduces Neuroinflammation-mediated Damage Post-traumatic Brain Injury
Overview
Authors
Affiliations
Background And Purpose: Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI.
Experimental Approach: This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI.
Key Results: Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1β and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI.
Conclusion And Implications: This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J J Neuroinflammation. 2025; 22(1):34.
PMID: 39920753 PMC: 11806845. DOI: 10.1186/s12974-025-03363-0.
The role of the cGAS-STING pathway in metabolic diseases.
Xu Q, Xing J, Wang S, Peng H, Liu Y Heliyon. 2024; 10(12):e33093.
PMID: 38988528 PMC: 11234105. DOI: 10.1016/j.heliyon.2024.e33093.