» Articles » PMID: 38685057

Imply: Improving Cell-type Deconvolution Accuracy Using Personalized Reference Profiles

Overview
Journal Genome Med
Publisher Biomed Central
Specialty Genetics
Date 2024 Apr 29
PMID 38685057
Authors
Affiliations
Soon will be listed here.
Abstract

Using computational tools, bulk transcriptomics can be deconvoluted to estimate the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, ignoring person-to-person heterogeneity. Here, we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. Simulation studies demonstrate reduced bias compared with existing methods. Real data analyses on longitudinal consortia show disparities in cell type proportions are associated with several disease phenotypes in Type 1 diabetes and Parkinson's disease. imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/ .

Citing Articles

Decoding Spatial Tissue Architecture: A Scalable Bayesian Topic Model for Multiplexed Imaging Analysis.

Peng X, Smithy J, Yosofvand M, Kostrzewa C, Bleile M, Ehrich F bioRxiv. 2024; .

PMID: 39416145 PMC: 11482893. DOI: 10.1101/2024.10.08.617293.


scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq.

Chen L, Guo Z, Deng T, Wu H Genome Biol. 2024; 25(1):269.

PMID: 39402623 PMC: 11472465. DOI: 10.1186/s13059-024-03410-8.


cypress: an R/Bioconductor package for cell-type-specific differential expression analysis power assessment.

Yu S, Meng G, Tang W, Ma W, Wang R, Zhu X Bioinformatics. 2024; 40(8).

PMID: 39153205 PMC: 11357793. DOI: 10.1093/bioinformatics/btae511.

References
1.
Ghaffari S, Bouchonville K, Saleh E, Schmidt R, Offer S, Sinha S . BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures. Genome Biol. 2023; 24(1):178. PMC: 10399072. DOI: 10.1186/s13059-023-03007-7. View

2.
Kuhn A, Kumar A, Beilina A, Dillman A, Cookson M, Singleton A . Cell population-specific expression analysis of human cerebellum. BMC Genomics. 2012; 13:610. PMC: 3561119. DOI: 10.1186/1471-2164-13-610. View

3.
Li Q, Liu X, Yang J, Erlund I, Lernmark A, Hagopian W . Plasma Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes: The TEDDY Study. Diabetes. 2020; 70(1):282-292. PMC: 7876562. DOI: 10.2337/db20-0696. View

4.
Rahmani E, Schweiger R, Rhead B, Criswell L, Barcellos L, Eskin E . Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat Commun. 2019; 10(1):3417. PMC: 6668473. DOI: 10.1038/s41467-019-11052-9. View

5.
Avila Cobos F, Alquicira-Hernandez J, Powell J, Mestdagh P, De Preter K . Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 2020; 11(1):5650. PMC: 7648640. DOI: 10.1038/s41467-020-19015-1. View