» Articles » PMID: 38623902

Abstract

Introduction: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers.

Methods: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment.

Results: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset.

Discussion: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset.

Highlights: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.

Citing Articles

Arterial spin labeling perfusion MRI in the Alzheimer's Disease Neuroimaging Initiative: Past, present, and future.

Thropp P, Phillips E, Jung Y, Thomas D, Tosun D Alzheimers Dement. 2024; 20(12):8937-8952.

PMID: 39428971 PMC: 11667499. DOI: 10.1002/alz.14310.


Frontoparietal network integrity supports cognitive function in pre-symptomatic frontotemporal dementia: Multimodal analysis of brain function, structure, and perfusion.

Liu X, Jones P, Pasternak M, Masellis M, Bouzigues A, Russell L Alzheimers Dement. 2024; 20(12):8576-8594.

PMID: 39417382 PMC: 11667541. DOI: 10.1002/alz.14299.


.

Pasternak M, Mirza S, Luciw N, Mutsaerts H, Petr J, Thomas D Alzheimers Dement. 2024; 20(5):3525-3542.

PMID: 38623902 PMC: 11095434. DOI: 10.1002/alz.13750.

References
1.
Herrero M, Barcia C, Navarro J . Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst. 2002; 18(8):386-404. DOI: 10.1007/s00381-002-0604-1. View

2.
Greaves C, Rohrer J . An update on genetic frontotemporal dementia. J Neurol. 2019; 266(8):2075-2086. PMC: 6647117. DOI: 10.1007/s00415-019-09363-4. View

3.
Seelaar H, Rohrer J, Pijnenburg Y, Fox N, Van Swieten J . Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2010; 82(5):476-86. DOI: 10.1136/jnnp.2010.212225. View

4.
Walhout R, Schmidt R, Westeneng H, Verstraete E, Seelen M, van Rheenen W . Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology. 2015; 85(20):1780-8. DOI: 10.1212/WNL.0000000000002135. View

5.
Mutsaerts H, Petr J, Vaclavu L, van Dalen J, Robertson A, Caan M . The spatial coefficient of variation in arterial spin labeling cerebral blood flow images. J Cereb Blood Flow Metab. 2017; 37(9):3184-3192. PMC: 5584689. DOI: 10.1177/0271678X16683690. View