6.
Lu X, Gu X, Shi Y
. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int J Biol Macromol. 2022; 210:716-741.
DOI: 10.1016/j.ijbiomac.2022.04.228.
View
7.
Ge X, Jing L, Zhao K, Su C, Zhang B, Zhang Q
. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2020; 335:127655.
DOI: 10.1016/j.foodchem.2020.127655.
View
8.
Ali A, Cottrell J, Dunshea F
. Characterization, Antioxidant Potential, and Pharmacokinetics Properties of Phenolic Compounds from Native Australian Herbs and Fruits. Plants (Basel). 2023; 12(5).
PMC: 10005590.
DOI: 10.3390/plants12050993.
View
9.
Tang Y, He X, Liu G, Wei Z, Sheng J, Sun J
. Effects of different extraction methods on the structural, antioxidant and hypoglycemic properties of red pitaya stem polysaccharide. Food Chem. 2022; 405(Pt A):134804.
DOI: 10.1016/j.foodchem.2022.134804.
View
10.
Zhang X, Sui Y, Liu X, Fu C, Qiao Y, Liu W
. Structures and anti-atherosclerotic effects of 1,6-α-glucans from Fructus Corni. Int J Biol Macromol. 2020; 161:1346-1357.
DOI: 10.1016/j.ijbiomac.2020.08.038.
View
11.
Shi R, Han Y, Yan Y, Qiao H, He J, Lian W
. Loganin Exerts Sedative and Hypnotic Effects via Modulation of the Serotonergic System and GABAergic Neurons. Front Pharmacol. 2019; 10:409.
PMC: 6491506.
DOI: 10.3389/fphar.2019.00409.
View
12.
Zaharudin N, Staerk D, Dragsted L
. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin. Food Chem. 2018; 270:481-486.
DOI: 10.1016/j.foodchem.2018.07.142.
View
13.
Klymenko S, Kucharska A, Sokol-Letowska A, Piorecki N, Przybylska D, Grygorieva O
. Iridoids, Flavonoids, and Antioxidant Capacity of , and × Fruits. Biomolecules. 2021; 11(6).
PMC: 8224299.
DOI: 10.3390/biom11060776.
View
14.
Yu H, Yao S, Zhou C, Fu F, Luo H, Du W
. Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-κB signaling. J Ethnopharmacol. 2020; 266:113447.
DOI: 10.1016/j.jep.2020.113447.
View
15.
Jang S, Jeong J, Hyam S, Joo Han M, Kim D
. Ursolic acid isolated from the seed of Cornus officinalis ameliorates colitis in mice by inhibiting the binding of lipopolysaccharide to Toll-like receptor 4 on macrophages. J Agric Food Chem. 2014; 62(40):9711-21.
DOI: 10.1021/jf501487v.
View
16.
Gao X, Liu Y, An Z, Ni J
. Active Components and Pharmacological Effects of : Literature Review. Front Pharmacol. 2021; 12:633447.
PMC: 8072387.
DOI: 10.3389/fphar.2021.633447.
View
17.
Yang L, Liu J, Xia X, Wong I, Chung S, Xu B
. Sulfated heteropolysaccharides from : Structural characterization and transcript-metabolite profiling of immunostimulatory effects on RAW264.7 cells. Food Chem X. 2022; 13:100251.
PMC: 9040004.
DOI: 10.1016/j.fochx.2022.100251.
View
18.
Li H, Lv Q, Liu A, Wang J, Sun X, Deng J
. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds. Food Chem. 2021; 371:131125.
DOI: 10.1016/j.foodchem.2021.131125.
View
19.
Chen F, Deng Z, Zhang B, Xiong Z, Zheng S, Tan C
. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells. J Agric Food Chem. 2015; 64(1):253-61.
DOI: 10.1021/acs.jafc.5b05450.
View
20.
Li Q, Hu S, Huang L, Zhang J, Cao G
. Evaluating the Therapeutic Mechanisms of Selected Active Compounds in Cornus Officinalis and Paeonia Lactiflora in Rheumatoid Arthritis via Network Pharmacology Analysis. Front Pharmacol. 2021; 12:648037.
PMC: 8097135.
DOI: 10.3389/fphar.2021.648037.
View