Multiparametric Single-Vesicle Flow Cytometry Resolves Extracellular Vesicle Heterogeneity and Reveals Selective Regulation of Biogenesis and Cargo Distribution
Overview
Authors
Affiliations
Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.
Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.
Lorite P, Dominguez J, Palomeque T, Torres M Int J Mol Sci. 2025; 26(1.
PMID: 39796048 PMC: 11720073. DOI: 10.3390/ijms26010189.
Sun S, Cox-Vazquez S, Cho N, Bazan G, Groves J J Extracell Vesicles. 2024; 13(12):e12520.
PMID: 39665317 PMC: 11635478. DOI: 10.1002/jev2.12520.
Squeezable Hydrogel Microparticles for Single Extracellular Vesicle Protein Profiling.
Roh Y, Morales R, Huynh E, Chintapula U, Reynolds D, Agosto-Nieves R Small. 2024; 21(1):e2407809.
PMID: 39468876 PMC: 11707585. DOI: 10.1002/smll.202407809.
Xu S, Zhang Z, Melvin B, Basu Ray N, Ikezu S, Ikezu T J Extracell Biol. 2024; 3(10):e70016.
PMID: 39416671 PMC: 11481688. DOI: 10.1002/jex2.70016.
Factors to consider before choosing EV labeling method for fluorescence-based techniques.
Dlugolecka M, Czystowska-Kuzmicz M Front Bioeng Biotechnol. 2024; 12:1479516.
PMID: 39359260 PMC: 11445045. DOI: 10.3389/fbioe.2024.1479516.