» Articles » PMID: 22157973

Quantitative Imaging of Membrane Lipid Order in Cells and Organisms

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2011 Dec 14
PMID 22157973
Citations 178
Authors
Affiliations
Soon will be listed here.
Abstract

It is now recognized that lipids and proteins in cellular membranes are not homogenously distributed. A high degree of membrane order is the biophysical hallmark of cholesterol-enriched lipid rafts, which may induce the lateral sorting of proteins within the membrane. Here we describe a quantitative fluorescence microscopy technique for imaging localized lipid environments and measuring membrane lipid order in live and fixed cells, as well as in intact tissues. The method is based on the spectral ratiometric imaging of the polarity-sensitive membrane dyes Laurdan and di-4-ANEPPDHQ. Laurdan typically requires multiphoton excitation, making it suitable for the imaging of tissues such as whole, living zebrafish embryos, whereas di-4-ANEPPDHQ imaging can be achieved with standard confocal microscopes. This approach, which takes around 4 h, directly examines the organization of cellular membranes and is distinct from alternative approaches that infer membrane order by measuring probe partitioning or dynamics.

Citing Articles

Measuring plasma membrane fluidity using confocal microscopy.

Carravilla P, Andronico L, Schlegel J, Urem Y, Sjule E, Ragaller F Nat Protoc. 2025; .

PMID: 39972239 DOI: 10.1038/s41596-024-01122-8.


Intercellular adhesion boots collective cell migration through elevated membrane tension.

Bijonowski B, Park J, Bergert M, Teubert C, Diz-Munoz A, Galic M Nat Commun. 2025; 16(1):1588.

PMID: 39939306 PMC: 11822051. DOI: 10.1038/s41467-025-56941-4.


Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?.

Anselmo S, Bonaccorso E, Gangemi C, Sancataldo G, Conti Nibali V, DAngelo G Membranes (Basel). 2025; 15(1).

PMID: 39852247 PMC: 11766618. DOI: 10.3390/membranes15010006.


Diet therapy abates mutant APC and KRas effects by reshaping plasma membrane cholesterol nanodomains.

Kim E, Erazo-Oliveras A, Munoz-Vega M, Fuentes N, Salinas M, George M Biophys J. 2024; 124(3):508-527.

PMID: 39709523 PMC: 11866957. DOI: 10.1016/j.bpj.2024.12.020.


Functional omics of ORP7 in primary endothelial cells.

Taskinen J, Holopainen M, Ruhanen H, van der Stoel M, Kakela R, Ikonen E BMC Biol. 2024; 22(1):292.

PMID: 39695567 PMC: 11656939. DOI: 10.1186/s12915-024-02087-6.


References
1.
Ikonen E . Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 2001; 13(4):470-7. DOI: 10.1016/s0955-0674(00)00238-6. View

2.
Wawrezinieck L, Rigneault H, Marguet D, Lenne P . Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J. 2005; 89(6):4029-42. PMC: 1366968. DOI: 10.1529/biophysj.105.067959. View

3.
Jin L, Millard A, Wuskell J, Clark H, Loew L . Cholesterol-enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys J. 2005; 89(1):L04-6. PMC: 1366585. DOI: 10.1529/biophysj.105.064816. View

4.
Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D . Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature. 2007; 450(7170):670-5. DOI: 10.1038/nature05996. View

5.
Parasassi T, De Stasio G, DUbaldo A, Gratton E . Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990; 57(6):1179-86. PMC: 1280828. DOI: 10.1016/S0006-3495(90)82637-0. View