6.
Sather W, Yang J, Tsien R
. Structural basis of ion channel permeation and selectivity. Curr Opin Neurobiol. 1994; 4(3):313-23.
DOI: 10.1016/0959-4388(94)90091-4.
View
7.
Salkoff L, Butler A, Wei A, Scavarda N, Giffen K, Ifune C
. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science. 1987; 237(4816):744-9.
DOI: 10.1126/science.2441469.
View
8.
Elinder F, Madeja M, Arhem P
. Surface Charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J Gen Physiol. 1996; 108(4):325-32.
PMC: 2229333.
DOI: 10.1085/jgp.108.4.325.
View
9.
Gur Barzilai M, Reitzel A, Kraus J, Gordon D, Technau U, Gurevitz M
. Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. Cell Rep. 2012; 2(2):242-8.
PMC: 3809514.
DOI: 10.1016/j.celrep.2012.06.016.
View
10.
Abderemane-Ali F, Findeisen F, Rossen N, Minor Jr D
. A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Neuron. 2019; 101(6):1134-1149.e3.
PMC: 8878153.
DOI: 10.1016/j.neuron.2019.01.011.
View
11.
Tan X, Bae C, Stix R, Fernandez-Marino A, Huffer K, Chang T
. Structure of the Shaker Kv channel and mechanism of slow C-type inactivation. Sci Adv. 2022; 8(11):eabm7814.
PMC: 8932672.
DOI: 10.1126/sciadv.abm7814.
View
12.
Reddi R, Matulef K, Riederer E, Whorton M, Valiyaveetil F
. Structural basis for C-type inactivation in a Shaker family voltage-gated K channel. Sci Adv. 2022; 8(16):eabm8804.
PMC: 9032944.
DOI: 10.1126/sciadv.abm8804.
View
13.
Dudev T, Lim C
. Ion selectivity strategies of sodium channel selectivity filters. Acc Chem Res. 2014; 47(12):3580-7.
DOI: 10.1021/ar5002878.
View
14.
Chen-Izu Y, Shaw R, Pitt G, Yarov-Yarovoy V, Sack J, Abriel H
. Na+ channel function, regulation, structure, trafficking and sequestration. J Physiol. 2015; 593(6):1347-60.
PMC: 4376415.
DOI: 10.1113/jphysiol.2014.281428.
View
15.
Ramaswami M, Tanouye M
. Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci U S A. 1989; 86(6):2079-82.
PMC: 286851.
DOI: 10.1073/pnas.86.6.2079.
View
16.
Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva S
. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol. 2013; 426(2):467-83.
PMC: 3947372.
DOI: 10.1016/j.jmb.2013.10.010.
View
17.
Angsutararux P, Kang P, Zhu W, Silva J
. Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. J Gen Physiol. 2021; 153(9).
PMC: 8348240.
DOI: 10.1085/jgp.202112891.
View
18.
Lewis A, Raman I
. Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVβ4 open-channel blocking peptide. J Gen Physiol. 2013; 142(3):191-206.
PMC: 3753608.
DOI: 10.1085/jgp.201310984.
View
19.
West J, Patton D, Scheuer T, Wang Y, Goldin A, Catterall W
. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992; 89(22):10910-4.
PMC: 50452.
DOI: 10.1073/pnas.89.22.10910.
View
20.
Chancey J, Shockett P, OReilly J
. Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. Am J Physiol Cell Physiol. 2007; 293(6):C1895-905.
DOI: 10.1152/ajpcell.00377.2007.
View