» Articles » PMID: 24120938

Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2013 Oct 15
PMID 24120938
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.

Citing Articles

Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer.

Matsuki Y, Iwamoto M, Oiki S Methods Mol Biol. 2024; 2796:1-21.

PMID: 38856892 DOI: 10.1007/978-1-0716-3818-7_1.


Structural mechanism of voltage-gated sodium channel slow inactivation.

Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F Nat Commun. 2024; 15(1):3691.

PMID: 38693179 PMC: 11063143. DOI: 10.1038/s41467-024-48125-3.


Honeybee CaV4 has distinct permeation, inactivation, and pharmacology from homologous NaV channels.

Bertaud A, Cens T, Chavanieu A, Estaran S, Rousset M, Soussi L J Gen Physiol. 2024; 156(5).

PMID: 38557788 PMC: 10983803. DOI: 10.1085/jgp.202313509.


Ion channel selectivity through ion-modulated changes of selectivity filter p values.

Chen A, Brooks B, Damjanovic A Proc Natl Acad Sci U S A. 2023; 120(26):e2220343120.

PMID: 37339196 PMC: 10293820. DOI: 10.1073/pnas.2220343120.


Molecular Dynamics Simulations of Ion Permeation in Human Voltage-Gated Sodium Channels.

Alberini G, Paz S, Corradi B, Abrams C, Benfenati F, Maragliano L J Chem Theory Comput. 2023; 19(10):2953-2972.

PMID: 37116214 PMC: 10210251. DOI: 10.1021/acs.jctc.2c00990.


References
1.
Findeisen F, Minor Jr D . Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation. J Gen Physiol. 2009; 133(3):327-43. PMC: 2654080. DOI: 10.1085/jgp.200810143. View

2.
Howard R, Clark K, Holton J, Minor Jr D . Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron. 2007; 53(5):663-75. PMC: 3011230. DOI: 10.1016/j.neuron.2007.02.010. View

3.
Lomize M, Lomize A, Pogozheva I, Mosberg H . OPM: orientations of proteins in membranes database. Bioinformatics. 2006; 22(5):623-5. DOI: 10.1093/bioinformatics/btk023. View

4.
Favre I, Moczydlowski E, Schild L . On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J. 1996; 71(6):3110-25. PMC: 1233800. DOI: 10.1016/S0006-3495(96)79505-X. View

5.
Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B . CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012; 8(10):e1002708. PMC: 3475669. DOI: 10.1371/journal.pcbi.1002708. View