6.
Hammond G, Machner M, Balla T
. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol. 2014; 205(1):113-26.
PMC: 3987136.
DOI: 10.1083/jcb.201312072.
View
7.
Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B
. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 2013; 155(4):830-43.
DOI: 10.1016/j.cell.2013.09.056.
View
8.
Kattan W, Chen W, Ma X, Lan T, van der Hoeven D, van der Hoeven R
. Targeting plasma membrane phosphatidylserine content to inhibit oncogenic KRAS function. Life Sci Alliance. 2019; 2(5).
PMC: 6709719.
DOI: 10.26508/lsa.201900431.
View
9.
Beh C, Cool L, Phillips J, Rine J
. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics. 2001; 157(3):1117-40.
PMC: 1461579.
DOI: 10.1093/genetics/157.3.1117.
View
10.
Du X, Brown A, Yang H
. Novel mechanisms of intracellular cholesterol transport: oxysterol-binding proteins and membrane contact sites. Curr Opin Cell Biol. 2015; 35:37-42.
DOI: 10.1016/j.ceb.2015.04.002.
View
11.
Kay J, Fairn G
. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun Signal. 2019; 17(1):126.
PMC: 6792266.
DOI: 10.1186/s12964-019-0438-z.
View
12.
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A
. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A. 2019; 116(27):13368-13373.
PMC: 6613088.
DOI: 10.1073/pnas.1822025116.
View
13.
Olkkonen V, Li S
. Oxysterol-binding proteins: sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res. 2013; 52(4):529-38.
DOI: 10.1016/j.plipres.2013.06.004.
View
14.
Ghai R, Du X, Wang H, Dong J, Ferguson C, Brown A
. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P ) and regulate its level at the plasma membrane. Nat Commun. 2017; 8(1):757.
PMC: 5624964.
DOI: 10.1038/s41467-017-00861-5.
View
15.
Im Y, Raychaudhuri S, Prinz W, Hurley J
. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature. 2005; 437(7055):154-8.
PMC: 1431608.
DOI: 10.1038/nature03923.
View
16.
Ammendolia D, Bement W, Brumell J
. Plasma membrane integrity: implications for health and disease. BMC Biol. 2021; 19(1):71.
PMC: 8042475.
DOI: 10.1186/s12915-021-00972-y.
View
17.
Tan J, Finkel T
. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature. 2022; 609(7928):815-821.
PMC: 9450835.
DOI: 10.1038/s41586-022-05164-4.
View
18.
Trinh M, Brown M, Goldstein J, Han J, Vale G, McDonald J
. Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proc Natl Acad Sci U S A. 2020; 117(31):18521-18529.
PMC: 7414171.
DOI: 10.1073/pnas.2010682117.
View
19.
de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W
. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol. 2011; 195(6):965-78.
PMC: 3241724.
DOI: 10.1083/jcb.201104062.
View
20.
Huang Y, Zhang X, Wang H, Yu L
. Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair. Nat Cell Biol. 2022; 24(6):825-832.
DOI: 10.1038/s41556-022-00920-0.
View