» Articles » PMID: 38526147

Noninvasive Tracking of Embryonic Cardiac Dynamics and Development with Volumetric Optoacoustic Spectroscopy

Overview
Journal Adv Sci (Weinh)
Date 2024 Mar 25
PMID 38526147
Authors
Affiliations
Soon will be listed here.
Abstract

Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.

Citing Articles

Diagnostic and therapeutic optical imaging in cardiovascular diseases.

Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J iScience. 2024; 27(11):111216.

PMID: 39569375 PMC: 11576408. DOI: 10.1016/j.isci.2024.111216.


Noninvasive Tracking of Embryonic Cardiac Dynamics and Development with Volumetric Optoacoustic Spectroscopy.

Hatami M, Ozbek A, Dean-Ben X, Gutierrez J, Schill A, Razansky D Adv Sci (Weinh). 2024; 11(22):e2400089.

PMID: 38526147 PMC: 11165471. DOI: 10.1002/advs.202400089.

References
1.
Phoon C, Aristizabal O, Turnbull D . 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound Med Biol. 2000; 26(8):1275-83. DOI: 10.1016/s0301-5629(00)00278-7. View

2.
Lin H, Dean-Ben X, Ivankovic I, Kimm M, Kosanke K, Haas H . Characterization of Cardiac Dynamics in an Acute Myocardial Infarction Model by Four-Dimensional Optoacoustic and Magnetic Resonance Imaging. Theranostics. 2017; 7(18):4470-4479. PMC: 5695143. DOI: 10.7150/thno.20616. View

3.
Ozsoy C, Ozbek A, Reiss M, Dean-Ben X, Razansky D . Ultrafast four-dimensional imaging of cardiac mechanical wave propagation with sparse optoacoustic sensing. Proc Natl Acad Sci U S A. 2021; 118(45). PMC: 8609330. DOI: 10.1073/pnas.2103979118. View

4.
Lindsey M, Kassiri Z, Virag J, de Castro Bras L, Scherrer-Crosbie M . Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol. 2018; 314(4):H733-H752. PMC: 5966769. DOI: 10.1152/ajpheart.00339.2017. View

5.
Laufer J, Norris F, Cleary J, Zhang E, Treeby B, Cox B . In vivo photoacoustic imaging of mouse embryos. J Biomed Opt. 2012; 17(6):061220. DOI: 10.1117/1.JBO.17.6.061220. View