» Articles » PMID: 38517719

Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles

Overview
Date 2024 Mar 22
PMID 38517719
Authors
Affiliations
Soon will be listed here.
Abstract

We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.

Citing Articles

Macular Oxygen Saturation in Glaucoma Using Retinal Oximetry of Visible Light Optical Coherence Tomography: A Pilot Study.

Wang J, Sadlak N, Fiorello M, Desai M, Yi J Transl Vis Sci Technol. 2025; 14(2):12.

PMID: 39913123 PMC: 11806434. DOI: 10.1167/tvst.14.2.12.


BreakNet: discontinuity-resilient multi-scale transformer segmentation of retinal layers.

Ganjee R, Wang B, Wang L, Zhao C, Sahel J, Pi S Biomed Opt Express. 2024; 15(12):6725-6738.

PMID: 39679390 PMC: 11640562. DOI: 10.1364/BOE.538904.


Hyperreflective Dots in Central Fovea Visualized by a Novel Application of Visible-Light Optical Coherence Tomography.

Krause M, Grannonico M, Tyler B, Miller D, Fan W, Liu M Case Rep Ophthalmol Med. 2024; 2024:5823455.

PMID: 39015384 PMC: 11251792. DOI: 10.1155/2024/5823455.


Longitudinal imaging of vitreal hyperreflective foci in mice with acute optic nerve damage using visible-light optical coherence tomography.

Fan W, Miller D, Chang S, Kweon J, Yeo W, Grannonico M Opt Lett. 2024; 49(8):1880-1883.

PMID: 38621029 PMC: 11217911. DOI: 10.1364/OL.512029.


Comparative In Vivo Imaging of Retinal Structures in Tree Shrews, Humans, and Mice.

Grannonico M, Miller D, Liu M, Krause M, Savier E, Erisir A eNeuro. 2024; 11(3).

PMID: 38538082 PMC: 10972737. DOI: 10.1523/ENEURO.0373-23.2024.

References
1.
Hendrickson A, Hicks D . Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp Eye Res. 2002; 74(4):435-44. DOI: 10.1006/exer.2002.1181. View

2.
Chen S, Liu Q, Shu X, Soetikno B, Tong S, Zhang H . Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. Biomed Opt Express. 2016; 7(9):3377-3389. PMC: 5030017. DOI: 10.1364/BOE.7.003377. View

3.
Pi S, Hormel T, Wei X, Cepurna W, Morrison J, Jia Y . Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography. Opt Lett. 2020; 45(7):2107-2110. PMC: 8575555. DOI: 10.1364/OL.386454. View

4.
Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M . In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2009; 15(10):6121-39. DOI: 10.1364/oe.15.006121. View

5.
Radius R, Anderson D . The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979; 97(6):1154-8. DOI: 10.1001/archopht.1979.01020010608021. View