» Articles » PMID: 30800499

Aperture Phase Modulation with Adaptive Optics: a Novel Approach for Speckle Reduction and Structure Extraction in Optical Coherence Tomography

Overview
Specialty Radiology
Date 2019 Feb 26
PMID 30800499
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Speckle is an inevitable consequence of the use of coherent light in imaging and acts as noise that corrupts image formation in most applications. Optical coherence tomographic imaging, as a technique employing coherence time gating, suffers from speckle. We present here a novel method of suppressing speckle noise intrinsically compatible with adaptive optics (AO) for confocal coherent imaging: modulation of the phase in the system pupil aperture with a segmented deformable mirror (DM) to introduce minor perturbations in the point spread function. This approach creates uncorrelated speckle patterns in a series of images, enabling averaging to suppress speckle noise while maintaining structural detail. A method is presented that efficiently determines the optimal range of modulation of DM segments relative to their AO-optimized position so that speckle noise is reduced while image resolution and signal strength are preserved. The method is active and independent of sample properties. Its effectiveness and efficiency are quantified and demonstrated by both non-biological and biological applications.

Citing Articles

Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography.

Das V, Zhang F, Bower A, Li J, Liu T, Aguilera N Commun Med (Lond). 2024; 4(1):68.

PMID: 38600290 PMC: 11006674. DOI: 10.1038/s43856-024-00483-1.


Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles.

Miller D, Grannonico M, Liu M, Savier E, McHaney K, Erisir A IEEE Trans Med Imaging. 2024; 43(8):2769-2777.

PMID: 38517719 PMC: 11366081. DOI: 10.1109/TMI.2024.3380530.


Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.

Zhang P, Wahl D, Mocci J, Miller E, Bonora S, Sarunic M Biomed Opt Express. 2023; 14(1):299-314.

PMID: 36698677 PMC: 9841993. DOI: 10.1364/BOE.473447.


Non-Local Mean Denoising Algorithm Based on Fractional Compact Finite Difference Scheme Effectively Reduces Speckle Noise in Optical Coherence Tomography Images.

Chen H, Gao J Micromachines (Basel). 2022; 13(12).

PMID: 36557339 PMC: 9781262. DOI: 10.3390/mi13122039.


Spatio-temporal optical coherence tomography provides full thickness imaging of the chorioretinal complex.

Auksorius E, Borycki D, Wegrzyn P, Sikorski B, Lizewski K, Zickiene I iScience. 2022; 25(12):105513.

PMID: 36419849 PMC: 9676634. DOI: 10.1016/j.isci.2022.105513.


References
1.
Liu L, Gardecki J, Nadkarni S, Toussaint J, Yagi Y, Bouma B . Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011; 17(8):1010-4. PMC: 3151347. DOI: 10.1038/nm.2409. View

2.
Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G . In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci U S A. 2016; 113(46):13138-13143. PMC: 5135337. DOI: 10.1073/pnas.1606428113. View

3.
Bonora S, Jian Y, Zhang P, Zam A, Pugh Jr E, Zawadzki R . Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt Express. 2015; 23(17):21931-41. PMC: 4646522. DOI: 10.1364/OE.23.021931. View

4.
Hu L, Xuan L, Liu Y, Cao Z, Li D, Mu Q . Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. Opt Express. 2009; 12(26):6403-9. DOI: 10.1364/opex.12.006403. View

5.
Li Y, Fariss R, Qian J, Cohen E, Qian H . Light-Induced Thickening of Photoreceptor Outer Segment Layer Detected by Ultra-High Resolution OCT Imaging. Invest Ophthalmol Vis Sci. 2016; 57(9):OCT105-11. PMC: 4968769. DOI: 10.1167/iovs.15-18539. View