» Articles » PMID: 38409325

A Homoeostatic Switch Causing Glycerol-3-phosphate and Phosphoethanolamine Accumulation Triggers Senescence by Rewiring Lipid Metabolism

Abstract

Cellular senescence affects many physiological and pathological processes and is characterized by durable cell cycle arrest, an inflammatory secretory phenotype and metabolic reprogramming. Here, by using dynamic transcriptome and metabolome profiling in human fibroblasts with different subtypes of senescence, we show that a homoeostatic switch that results in glycerol-3-phosphate (G3P) and phosphoethanolamine (pEtN) accumulation links lipid metabolism to the senescence gene expression programme. Mechanistically, p53-dependent glycerol kinase activation and post-translational inactivation of phosphate cytidylyltransferase 2, ethanolamine regulate this metabolic switch, which promotes triglyceride accumulation in lipid droplets and induces the senescence gene expression programme. Conversely, G3P phosphatase and ethanolamine-phosphate phospho-lyase-based scavenging of G3P and pEtN acts in a senomorphic way by reducing G3P and pEtN accumulation. Collectively, our study ties G3P and pEtN accumulation to controlling lipid droplet biogenesis and phospholipid flux in senescent cells, providing a potential therapeutic avenue for targeting senescence and related pathophysiology.

Citing Articles

Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype.

Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T Nat Commun. 2025; 16(1):1696.

PMID: 39962062 PMC: 11833096. DOI: 10.1038/s41467-025-56929-0.


Differential transcriptomic profiling of lipid metabolism and collagen remodeling in fast- and slow-twitch skeletal muscles in aging.

Liu Y, Xia G, Zhu S, Shi Y, Huang X, Wu J FASEB J. 2025; 39(2):e70335.

PMID: 39831549 PMC: 11744740. DOI: 10.1096/fj.202402294R.


Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination.

Xu W, Lin Z, Kim C, Wang Z, Wang T, Cortez-Jugo C Sci Adv. 2024; 10(50):eads9542.

PMID: 39671490 PMC: 11641004. DOI: 10.1126/sciadv.ads9542.


Single-Cell Simultaneous Metabolome and Transcriptome Profiling Revealing Metabolite-Gene Correlation Network.

Mao X, Xia D, Xu M, Gao Y, Tong L, Lu C Adv Sci (Weinh). 2024; 12(4):e2411276.

PMID: 39629980 PMC: 11775534. DOI: 10.1002/advs.202411276.


Differential proteomic profiles of exosomes in pediatric and adult adamantinomatous craniopharyngioma cyst fluid.

Chen Y, Wang Z, Huang Q, Wang Y, Yan F, Xiang S Mol Biol Rep. 2024; 51(1):1126.

PMID: 39505756 DOI: 10.1007/s11033-024-10073-y.


References
1.
Gorgoulis V, Adams P, Alimonti A, Bennett D, Bischof O, Bishop C . Cellular Senescence: Defining a Path Forward. Cell. 2019; 179(4):813-827. DOI: 10.1016/j.cell.2019.10.005. View

2.
Wiley C, Campisi J . The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021; 3(10):1290-1301. PMC: 8889622. DOI: 10.1038/s42255-021-00483-8. View

3.
Neurohr G, Terry R, Lengefeld J, Bonney M, Brittingham G, Moretto F . Excessive Cell Growth Causes Cytoplasm Dilution And Contributes to Senescence. Cell. 2019; 176(5):1083-1097.e18. PMC: 6386581. DOI: 10.1016/j.cell.2019.01.018. View

4.
Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C . A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995; 92(20):9363-7. PMC: 40985. DOI: 10.1073/pnas.92.20.9363. View

5.
Childs B, Gluscevic M, Baker D, Laberge R, Marquess D, Dananberg J . Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017; 16(10):718-735. PMC: 5942225. DOI: 10.1038/nrd.2017.116. View