» Articles » PMID: 38404692

Flexible and Transparent Metal Oxide/Metal Grid Hybrid Interfaces for Electrophysiology and Optogenetics

Overview
Date 2024 Feb 26
PMID 38404692
Authors
Affiliations
Soon will be listed here.
Abstract

Flexible and transparent microelectrodes and interconnects provide the unique capability for a wide range of emerging biological applications, including simultaneous optical and electrical interrogation of biological systems. For practical biointerfacing, it is important to further improve the optical, electrical, electrochemical, and mechanical properties of the transparent conductive materials. Here, high-performance microelectrodes and interconnects with high optical transmittance (59-81%), superior electrochemical impedance (5.4-18.4 Ω cm), and excellent sheet resistance (5.6-14.1 Ω sq), using indium tin oxide (ITO) and metal grid (MG) hybrid structures are demonstrated. Notably, the hybrid structures retain the superior mechanical properties of flexible MG other than brittle ITO with no changes in sheet resistance even after 5000 bending cycles against a small radius at 5 mm. The capabilities of the ITO/MG microelectrodes and interconnects are highlighted by high-fidelity electrical recordings of transgenic mouse hearts during co-localized programmed optogenetic stimulation. histological analysis reveals that the ITO/MG structures are fully biocompatible. Those results demonstrate the great potential of ITO/MG interfaces for broad fundamental and translational physiological studies.

Citing Articles

Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice.

Yuan M, Li F, Xue F, Wang Y, Li B, Tang R Microsyst Nanoeng. 2025; 11(1):32.

PMID: 39994180 PMC: 11850855. DOI: 10.1038/s41378-025-00873-y.


A soft multimodal optoelectronic array interface for multiparametric mapping of heart function in vivo.

Quirion N, Madrid M, Chang J, Fehr A, Rytkin E, Shields N Sci Adv. 2025; 11(6):eads8608.

PMID: 39919178 PMC: 11804930. DOI: 10.1126/sciadv.ads8608.


Transparent and Stretchable Au─Ag Nanowire Recording Microelectrode Arrays.

Chen Z, Nguyen K, Kowalik G, Shi X, Tian J, Doshi M Adv Mater Technol. 2024; 8(10).

PMID: 38644939 PMC: 11031257. DOI: 10.1002/admt.202201716.


Flexible and Transparent Metal Oxide/Metal Grid Hybrid Interfaces for Electrophysiology and Optogenetics.

Chen Z, Yin R, Obaid S, Tian J, Chen S, Miniovich A Adv Mater Technol. 2024; 5(8).

PMID: 38404692 PMC: 10888205. DOI: 10.1002/admt.202000322.


Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications.

Chen L, Khan A, Dai S, Bermak A, Li W Adv Sci (Weinh). 2023; 10(35):e2302858.

PMID: 37890452 PMC: 10724424. DOI: 10.1002/advs.202302858.


References
1.
Zhang Y, Ali S, Dervishi E, Xu Y, Li Z, Casciano D . Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010; 4(6):3181-6. DOI: 10.1021/nn1007176. View

2.
Sakamoto K, Kuwae H, Kobayashi N, Nobori A, Shoji S, Mizuno J . Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide. Sci Rep. 2018; 8(1):2825. PMC: 5809474. DOI: 10.1038/s41598-018-20978-x. View

3.
Jones J, LEPESCHKIN E, Jones R, Rush S . Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol. 1978; 235(2):H214-22. DOI: 10.1152/ajpheart.1978.235.2.H214. View

4.
Kim S, Yoo J, Park J . Using Electrospun AgNW/P(VDF-TrFE) Composite Nanofibers to Create Transparent and Wearable Single-Electrode Triboelectric Nanogenerators for Self-Powered Touch Panels. ACS Appl Mater Interfaces. 2019; 11(16):15088-15096. DOI: 10.1021/acsami.9b03338. View

5.
Khodagholy D, Gelinas J, Thesen T, Doyle W, Devinsky O, Malliaras G . NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2014; 18(2):310-5. PMC: 4308485. DOI: 10.1038/nn.3905. View