» Articles » PMID: 37641661

Transparent, Low-Impedance Inkjet-Printed PEDOT:PSS Microelectrodes for Multi-modal Neuroscience

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Transparent microelectrodes that facilitate simultaneous optical and electrophysiological interfacing are desirable tools for neuroscience. Electrodes made from transparent conductors such as graphene and indium tin oxide (ITO) show promise but are often limited by poor interfacial charge-transfer properties. Here, microelectrodes are demonstrated that take advantage of the transparency and volumetric capacitance of the mixed ion-electron conductor Poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Ring-shaped microelectrodes are fabricated by inkjet-printing PEDOT:PSS, encapsulating with Parylene-C, and then exposing a contact site that is much smaller than the microelectrode outer diameter. This unique structure allows the encapsulated portion of the microelectrode volume surrounding the contact site to participate in signal transduction, which reduces impedance and enhances charge storage capacity. While using the same 100 μm diameter contact site, increasing the outer diameter of the encapsulated electrode from 300 to 550 μm reduces the impedance from 294±21 to 98±2 kΩ, respectively, at 1 Hz. Similarly, the charge storage capacity is enhanced from 6 to 21 mC cm. The PEDOT:PSS microelectrodes provide a low-haze, high-transmittance optical interface, demonstrating their suitability for optical neuroscience applications. They remain functional after a million 1 V stimulation cycles, up to 600 μA of stimulation current, and more than 1000 mechanical bending cycles.

Citing Articles

Thin-film implants for bioelectronic medicine.

Oldroyd P, El Hadwe S, Barone D, Malliaras G MRS Bull. 2024; 49(10):1045-1058.

PMID: 39397879 PMC: 11469980. DOI: 10.1557/s43577-024-00786-7.


Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays.

Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z Micromachines (Basel). 2023; 14(4).

PMID: 37420942 PMC: 10145465. DOI: 10.3390/mi14040709.


Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays.

Hu J, Hossain R, Navabi Z, Tillery A, LaRoque M, Donaldson P J Neural Eng. 2022; 20(1).

PMID: 36548995 PMC: 10027363. DOI: 10.1088/1741-2552/acae08.


Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings.

Donaldson P, Navabi Z, Carter R, Fausner S, Ghanbari L, Ebner T Adv Healthc Mater. 2022; 11(18):e2200626.

PMID: 35869830 PMC: 9573805. DOI: 10.1002/adhm.202200626.


Overview of the Influence of Silver, Gold, and Titanium Nanoparticles on the Physical Properties of PEDOT:PSS-Coated Cotton Fabrics.

Alhashmi Alamer F, Beyari R Nanomaterials (Basel). 2022; 12(9).

PMID: 35564317 PMC: 9105909. DOI: 10.3390/nano12091609.


References
1.
Donaldson P, Navabi Z, Carter R, Fausner S, Ghanbari L, Ebner T . Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings. Adv Healthc Mater. 2022; 11(18):e2200626. PMC: 9573805. DOI: 10.1002/adhm.202200626. View

2.
Zhang J, Liu X, Xu W, Luo W, Li M, Chu F . Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett. 2018; 18(5):2903-2911. DOI: 10.1021/acs.nanolett.8b00087. View

3.
Kuzum D, Takano H, Shim E, Reed J, Juul H, Richardson A . Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun. 2014; 5:5259. PMC: 4331185. DOI: 10.1038/ncomms6259. View

4.
Boehler C, Asplund M . PEDOT as a high charge injection material for low-frequency stimulation. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018:2202-2205. DOI: 10.1109/EMBC.2018.8512597. View

5.
Franks W, Schenker I, Schmutz P, Hierlemann A . Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005; 52(7):1295-302. DOI: 10.1109/TBME.2005.847523. View