A Macrocyclic Kinase Inhibitor Overcomes Triple Resistant Mutations in EGFR-positive Lung Cancer
Overview
Authors
Affiliations
Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.
Hu T, Lou Y, Su M Zhongguo Fei Ai Za Zhi. 2025; 27(11):815-825.
PMID: 39800476 PMC: 11732384. DOI: 10.3779/j.issn.1009-3419.2024.101.31.
Das D, Xie L, Hong J RSC Med Chem. 2024; .
PMID: 39246743 PMC: 11376191. DOI: 10.1039/d4md00384e.