» Articles » PMID: 38363755

Development of a Python-based Electron Ionization Mass Spectrometry Amino Acid and Peptide Fragment Prediction Model

Overview
Journal PLoS One
Date 2024 Feb 16
PMID 38363755
Authors
Affiliations
Soon will be listed here.
Abstract

The increased fragmentation caused by harsher ionization methods used during mass spectrometry such as electron ionization can make interpreting the mass spectra of peptides difficult. Therefore, the development of tools to aid in this spectral analysis is important in utilizing these harsher ionization methods to study peptides, as these tools may be more accessible to some researchers. We have compiled fragmentation mechanisms described in the literature, confirmed them experimentally, and used them to create a Python-based fragment prediction model for peptides analyzed under direct exposure probe electron ionization mass spectrometry. This initial model has been tested using single amino acids as well as targeted libraries of short peptides. It was found that the model does well in predicting fragments of peptides composed of amino acids for which the model is well-defined, but several cases where additional mechanistic information needs to be incorporated have been identified.

References
1.
Linenberg A . Gas chromatography of amino acid derivatives. Mol Biol Biochem Biophys. 1970; 8:124-36. DOI: 10.1007/978-3-662-12834-3_5. View

2.
Seifert Jr W, McKee R, Beckner C, Caprioli R . Characterization of mixtures of dipeptides by gas chromatography/mass spectrometry. Anal Biochem. 1978; 88(1):149-61. DOI: 10.1016/0003-2697(78)90407-4. View

3.
Husek P . Gas chromatography of amino acids. J Chromatogr. 1975; 113(2):139-230. DOI: 10.1016/s0021-9673(00)86962-9. View

4.
Zhang P, Chan W, Ang I, Wei R, Lam M, Lei K . Revisiting Fragmentation Reactions of Protonated α-Amino Acids by High-Resolution Electrospray Ionization Tandem Mass Spectrometry with Collision-Induced Dissociation. Sci Rep. 2019; 9(1):6453. PMC: 6478932. DOI: 10.1038/s41598-019-42777-8. View

5.
Wei J, Belanger D, Adams R, Sculley D . Rapid Prediction of Electron-Ionization Mass Spectrometry Using Neural Networks. ACS Cent Sci. 2019; 5(4):700-708. PMC: 6487538. DOI: 10.1021/acscentsci.9b00085. View