» Articles » PMID: 31041390

Rapid Prediction of Electron-Ionization Mass Spectrometry Using Neural Networks

Overview
Journal ACS Cent Sci
Specialty Chemistry
Date 2019 May 2
PMID 31041390
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

When confronted with a substance of unknown identity, researchers often perform mass spectrometry on the sample and compare the observed spectrum to a library of previously collected spectra to identify the molecule. While popular, this approach will fail to identify molecules that are not in the existing library. In response, we propose to improve the library's coverage by augmenting it with synthetic spectra that are predicted from candidate molecules using machine learning. We contribute a lightweight neural network model that quickly predicts mass spectra for small molecules, averaging 5 ms per molecule with a recall-at-10 accuracy of 91.8%. Achieving high-accuracy predictions requires a novel neural network architecture that is designed to capture typical fragmentation patterns from electron ionization. We analyze the effects of our modeling innovations on library matching performance and compare our models to prior machine-learning-based work on spectrum prediction.

Citing Articles

A guide to reverse metabolomics-a framework for big data discovery strategy.

Charron-Lamoureux V, Mannochio-Russo H, Lamichhane S, Xing S, Patan A, Portal Gomes P Nat Protoc. 2025; .

PMID: 40021805 DOI: 10.1038/s41596-024-01136-2.


From multi-omics to predictive biomarker: AI in tumor microenvironment.

Hai L, Jiang Z, Zhang H, Sun Y Front Immunol. 2025; 15:1514977.

PMID: 39763649 PMC: 11701166. DOI: 10.3389/fimmu.2024.1514977.


JESTR: Joint Embedding Space Technique for Ranking Candidate Molecules for the Annotation of Untargeted Metabolomics Data.

Kalia A, Krishnan D, Hassoun S ArXiv. 2024; .

PMID: 39606728 PMC: 11601792.


Insights into predicting small molecule retention times in liquid chromatography using deep learning.

Liu Y, Yoshizawa A, Ling Y, Okuda S J Cheminform. 2024; 16(1):113.

PMID: 39375739 PMC: 11460055. DOI: 10.1186/s13321-024-00905-1.


Deep learning prediction of electrospray ionization tandem mass spectra of chemically derived molecules.

Chen B, Li H, Huang R, Tang Y, Li F Nat Commun. 2024; 15(1):8396.

PMID: 39333165 PMC: 11436754. DOI: 10.1038/s41467-024-52805-5.


References
1.
Rosenstock H, Wallenstein M, Wahrhaftig A, EYRING H . Absolute Rate Theory for Isolated Systems and the Mass Spectra of Polyatomic Molecules. Proc Natl Acad Sci U S A. 1952; 38(8):667-78. PMC: 1063633. DOI: 10.1073/pnas.38.8.667. View

2.
Hsieh Y, Korfmacher W . Increasing speed and throughput when using HPLC-MS/MS systems for drug metabolism and pharmacokinetic screening. Curr Drug Metab. 2006; 7(5):479-89. DOI: 10.2174/138920006777697963. View

3.
Petrie S, Bohme D . Ions in space. Mass Spectrom Rev. 2006; 26(2):258-80. DOI: 10.1002/mas.20114. View

4.
Rogers D, Hahn M . Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50(5):742-54. DOI: 10.1021/ci100050t. View

5.
Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K . MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010; 45(7):703-14. DOI: 10.1002/jms.1777. View