» Articles » PMID: 38354740

SLC25A51 Decouples the Mitochondrial NAD/NADH Ratio to Control Proliferation of AML Cells

Overview
Journal Cell Metab
Publisher Cell Press
Date 2024 Feb 14
PMID 38354740
Authors
Affiliations
Soon will be listed here.
Abstract

SLC25A51 selectively imports oxidized NAD into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.

Citing Articles

Targeting Metabolic and Epigenetic Vulnerabilities in Glioblastoma with SN-38 and Rabusertib Combination Therapy.

Chiou J, Impedovo V, Huynh Y, Gorgoglione R, Penalva L, Lodi A Int J Mol Sci. 2025; 26(2).

PMID: 39859189 PMC: 11764980. DOI: 10.3390/ijms26020474.


Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy.

Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C Mol Cancer. 2025; 24(1):7.

PMID: 39789606 PMC: 11716519. DOI: 10.1186/s12943-024-02205-6.


CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

Hu W, Cui X, Liu H, Li Z, Chen X, Wang Q J Exp Clin Cancer Res. 2025; 44(1):3.

PMID: 39754188 PMC: 11697892. DOI: 10.1186/s13046-024-03254-x.


Subcellular NAD pools are interconnected and buffered by mitochondrial NAD.

Hoyland L, VanLinden M, Niere M, Stromland O, Sharma S, Dietze J Nat Metab. 2024; 6(12):2319-2337.

PMID: 39702414 DOI: 10.1038/s42255-024-01174-w.


Inhalation Anesthetics Play a Janus-Faced Role in Self-Renewal and Differentiation of Stem Cells.

Hao X, Li Y, Gao H, Wang Z, Fang B Biomolecules. 2024; 14(9).

PMID: 39334933 PMC: 11430341. DOI: 10.3390/biom14091167.


References
1.
Chedere A, Mishra M, Kulkarni O, Sriraman S, Chandra N . Personalized quantitative models of NAD metabolism in hepatocellular carcinoma identify a subgroup with poor prognosis. Front Oncol. 2022; 12:954512. PMC: 9565660. DOI: 10.3389/fonc.2022.954512. View

2.
Metzeler K, Hummel M, Bloomfield C, Spiekermann K, Braess J, Sauerland M . An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112(10):4193-201. PMC: 2954679. DOI: 10.1182/blood-2008-02-134411. View

3.
Sweeney S, Collins M, Pandey R, Chiou J, Lodi A, Tiziani S . Identification of a synergistic combination of dimethylaminoparthenolide and shikonin alters metabolism and inhibits proliferation of pediatric precursor-B cell acute lymphoblastic leukemia. Mol Carcinog. 2020; 59(4):399-411. DOI: 10.1002/mc.23163. View

4.
Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella J, Corneau S . Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell. 2019; 36(1):84-99.e8. DOI: 10.1016/j.ccell.2019.06.003. View

5.
Gregory M, Nemkov T, Park H, Zaberezhnyy V, Gehrke S, Adane B . Targeting Glutamine Metabolism and Redox State for Leukemia Therapy. Clin Cancer Res. 2019; 25(13):4079-4090. PMC: 6642698. DOI: 10.1158/1078-0432.CCR-18-3223. View